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ABSTRACT
Fusing parallel loops in consecutive matrix multiplications
presents an opportunity for data locality optimization. How-
ever, irregular dependencies between iterations across the
loops hinder existing compilers from performing this fusion.
It also poses challenges for runtime methods, leading to ex-
cessive synchronization overhead or limited data reuse. This
paper introduces tile fusion, a compiler approach that fuses
tiles from the two parallel loops of matrix multiplications
with sparse dependence between them. By enhancing data
locality and providing balanced workloads, tile fusion ac-
celerates graph neural network training and the solution of
sparse linear systems, achieving geometric mean speedups
of 2.33× over PyG and 1.32× over MKL, respectively.

CCS CONCEPTS
• Software and its engineering → Domain specific lan-
guages.
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1 INTRODUCTION
Matrix multiplications involving dense and sparse data struc-
tures can be represented as parallel loops, where each iter-
ation executes independently without compromising cor-
rectness. These operations are fundamental to numerous
scientific and machine learning applications, including itera-
tive linear solvers with multiple right-hand sides [31], Jacobi
iterations [50], power methods [44], Graph Neural Networks
(GNNs) [19, 51, 56, 58], and sparse neural networks [47].
These operations often share data through matrix exchanges.
Loop fusion is an optimization technique that exploits data
locality by combining operations that share data. However,
loop fusion is not always feasible when sparse data structures
are involved. Consider, for example, a dense matrix-matrix
multiplication, 𝐷1 = 𝐵𝐶 , followed by a sparse matrix-dense
matrix multiplication (SpMM), 𝐷 = 𝐴𝐷1, where𝐴 is a sparse
𝑛 × 𝑛 matrix, 𝐵 is a dense 𝑛 × 𝑏𝐶𝑜𝑙 matrix, and 𝐶 is a dense
𝑏𝐶𝑜𝑙 × 𝑐𝐶𝑜𝑙 matrix. Reusing 𝐷1 is challenging because the
compact indexing used in sparse matrix 𝐴 introduces non-
affine dependencies between the two computations.

The mainstream approach in existing numerical libraries
such as MKL [57] or machine learning frameworks such
as PyTorch Geometric (PyG) [19] and Deep Graph Library
(DGL) [58] is to optimize each operation separately. For ex-
ample, 𝐷1 = 𝐵𝐶 and 𝐷 = 𝐴𝐷1 map to an efficient General
Matrix Multiplication (GeMM)-SpMM sequence. While these
routines benefit from several locality and load balancing op-
portunities [25, 57] within each loop separately, potential
locality opportunities across loops, e.g., reusing 𝐷1, are ig-
nored. In an efficient fusion strategy, it is essential to consider
both within- and across-loop data reuse opportunities.

Fusing operations or loops is commonly used to eliminate
intermediate matrices between two operations. Tensor com-
pilers [18, 30, 41] generate fused code when 𝐴 is sparse and
𝐵 and 𝐶 are dense. The generated code iterates over 𝐴 and
performs a general matrix-vector multiplication (GeMV) for
each nonzero element of 𝐴. Although this approach elim-
inates the need to store intermediate results, i.e., 𝐷1, it in-
troduces redundant computation. Moreover, this method is
inapplicable when both 𝐴 and 𝐵 are sparse due to irregular
loop bounds at compile time.
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Listing 1: GeMM-SpMM code,𝐷1 = 𝐵×𝐶 and𝐷 = 𝐴×𝐷1
1 @njit(pipeline_class = TileFusion)

2 def gemm_spmm(A, B, C, n, bCol , cCol):

3 D1 = np.zeros((n, cCol))

4 D = np.zeros((n, cCol))

5 for i1 in fprange(n): # GeMM

6 for i2 in range(bCol):

7 for i3 in range(cCol):

8 D1[i1,i3] += B[i1,i2]*C[i2,i3]

9 for j1 in fprange(n): # SpMM

10 for j2 in range(A.p[j1], A.p[j1+1]):

11 for j3 in range(cCol):

12 D[j1,j3] += A.x[j2]*D1[A.i[j2],j3]

13 return D
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(a) Sparse matrix A
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(b) Dependence graph G

Figure 1: Sparse matrix𝐴 in Figure 1a creates sparse de-
pendence between iterations of GeMM (i1) and SpMM
(j1) shown as purple and white vertices in Figure 1b.

Prior compiler approaches [32] and libraries [16] have
leveraged sparsity information at runtime to fuse sparse
matrix-vector multiplications (SpMV) and enable data reuse
between operations. These methods model SpMV operations
as iteration-directed acyclic graphs (DAGs), where vertices
represent outermost loop iterations and edges denote depen-
dencies between iterations. A scheduler then groups DAG
vertices into tiles at runtime. Sparse tiling [32] employs barri-
ers and atomic operations to maintain dependencies between
tiles during parallel execution. Given the parallel nature of
outermost loops in GeMM, SpMM, and SpMV, these tech-
niques could potentially be adapted for fusing GeMM-SpMM
and SpMM-SpMM. However, the synchronization or redun-
dant computation cost of each fused iteration in both compu-
tations is proportional to 𝑏𝐶𝑜𝑙 and 𝑐𝐶𝑜𝑙 , exacerbating race
conditions and wasting computing resources. Also, the data
reuse opportunities across loops are higher in these compu-
tations, and an effective compromise is needed.

We propose sparsity-oriented tile fusion, or tile fusion for
short, to fuse parallel loops with sparse dependencies. Tile fu-
sion includes a transformation that fuses tiles of two parallel
loops to enable locality within and across loops with sparse
dependencies. To ensure tiles fit within fast memory and pro-
cessors are balanced, a tile fusion scheduler builds variable
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Figure 2: Potential computation and data reuse percent-
age for GEMM-SpMM for SuiteSparse matrices

tile sizes based on the sparsity pattern and enables partial
safe fusion between tiles. Tile fusion has been thoroughly
explored on different multicore CPUs and GPUs, as both
architectures are highly relevant in numerical simulations
and machine learning. Tile fusion demonstrates superior
performance, achieving a geometric mean (GMean) speedup
of 2.33× and 1.32× compared to unfused implementations
in Graph Neural Networks (GNNs) and linear solvers, re-
spectively. Furthermore, it outperforms the best unfused
and fused baselines by GMean speedups of 1.55× and 3.52×,
respectively, on SuiteSparse matrices.

2 MOTIVATION AND OVERVIEW
We use the code in Listing 1 to discuss challenges in fusing
matrix multiplications and motivate tile fusion’s compile-
time and runtime strategies. Lines 5–8 execute GeMM, 𝐷1 =

𝐵𝐶 , and lines 9–12 perform SpMM, 𝐷 = 𝐴𝐷1. Iterations
of loops i1 and j1 are independent, allowing for parallel
execution. The two loops both operate on a shared matrix
𝐷1, which, if reused, will improve locality. To enable this
reuse and improve locality, loops i1 and j1 should be fused.
However, fusing loops i1 and j1 is problematic because each
iteration in j1 depends on a variable number of i1 iterations,
and this number is not known until runtime. Due to this, each
loop is often optimized separately and mapped to efficient
GeMM and SpMM implementations.
If the accesses to D1[A.i[j2],j3] in line 12 in Listing 1

are known, then multiple iterations of the first loop can be
fused with iterations of the second loop. Since A.i[j2] de-
pends on the matrix sparsity pattern of𝐴, we use an example
sparse matrix, shown with its dense representation in Fig-
ure 1a. For example, if iterations 1–4 of loop i1 execute, then
iterations 1–3 of the loop j1 can be executed, enabling reuse
of a row of 𝐷1. In the DAG in Figure 1b, this dependence
is illustrated by four shared edges connecting purple ver-
tices 1–4 and white vertices 1–3. This, however, requires
the dependence between the two loops to be sparse to en-
able interleaving. Fortunately, sparse matrices exhibit this
property. Figure 2 shows the percentage of operations with
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shared data that can be reused if the tile size is large enough.
For this figure, a tile size of 2048 enables, on average, 34%
of the computations of both loops to execute in one fused
tile. However, defining fused tile size is crucial for balancing
parallel workload and ensuring locality within and across
loops.

Listing 2: Tile fusion overall view
1 // Matrices A, B, and C are constructed

2 G = DependenceDAGGeMMSpMM(A);//Sec 3.2

3 T = Scheduler(G, bCol , cCol , Arch , I, J);//

Sec 4

4 // other operations ...

5 D = TileFusedGeMMSpMM(A,B,C,T);//Sec 3.1

To enable the fusion of iterations when sparse dependen-
cies exist between loops, tile fusion employs a compile-time
and runtime strategy. Listing 2 shows an overview of tile
fusion. Tile fusion comprises a compile-time transformation
and a runtime scheduler. Functions in lines 2 and 5 in List-
ing 2 show the DAG generation and fused code produced by
the tile fusion transformation from the input code provided
in Listing 1. The tile fusion runtime scheduler is a library call
that takes a DAG of loop iterations and constructs a fused
tiling schedule based on sparsity, architecture information,
and the loops’ iteration spaces (I and J). This schedule is
then passed to the fused code to guide the order of iterations
within the fused code. The generated schedule depends on
the sparsity pattern of 𝐴 and remains valid as long as this
pattern is static.

3 TILE FUSION TRANSFORMATION
Tile fusion is a compiler transformation that fuses two paral-
lel loops even when there are non-affine accesses with sparse
dependencies between iterations. This section discusses the
tile fusion code lowering, its compiler implementation, and
how the dependencies between fused iterations are satisfied.

Listing 3: Generic form of tile fusion code lowering.
1 for(w in T ){ // for each tile group

2 parallel_for(t in T [w]){ // for each tile

3 for(i1 in t.first)

4 \\ first loop body

5 for(j1 in t.second)

6 \\ second loop body

7 }}

3.1 Code Lowering
The tile fusion code lowering fuses the two annotated loops
with fprange. The fused code is generated by merging the
outermost loops of the two computations, as depicted in
Listing 3. As shown, the outermost loops are replaced with a

doubly nested loop structure that iterates over a partial order
stored inT . The order of statements in the bodies of the loops
remains unchanged. The partial order of fused iterations, T ,
is computed using a runtime scheduler. Each loop iteration
in Line 1 of Listing 3 corresponds to a barrier in CPUs and
a kernel launch in GPUs. Each iteration of loop 𝑡 (Line 2),
internally annotated with parallel_for, is mapped to a
thread in CPUs or a thread block in GPUs. Fused iterations in
T are stored as List<List<Pair<Set<int>, Set<int>>>>
where first and second are two sets of iterations mapped
to the corresponding loop body at runtime. This enables data
reuse between iterations of the two loops.

Listing 4: TileFusedGeMMSpMM in Listing 2.
1 for (w in T){ // for each wavefront

2 parallel_for(t in T[w]){ // for each tile

3 for(i1 in t.first)

4 for(int i2=0; i2<bCol; i2++)

5 for(int i3=0; i3<cCol; i3++)

6 D1[i1][i3] += B[i1][i2]*C[i2][i3];

7 for(j1 in t.second)

8 for(int j2=A.p[j1]; j2<A.p[j1+1]; j2++)

9 for(int j3=0; j3<cCol; j3++)

10 D[j1][j3] += A.x[j2]*D1[A.i[j2]][j3];

11 }}

Listing 4 presents an example of the transformation for the
GeMM-SpMM loop pair shown in Listing 1. As illustrated,
the fused code incorporates code segments for both opera-
tions. Lines 3–6 and 7–10 in Listing 4 represent the innermost
loops for GeMM and SpMM, respectively. Loop bounds in
line 3 of Listing 4 are dynamically determined based on the
schedule T , enabling data reuse between loops. The fused
code preserves fine-grained parallelism, such as vectoriza-
tion, inherent to the unfused code. For instance, lines 3–6 in
Listing 4 can be mapped to a highly optimized GEMM BLAS
on CPUs to leverage vector processors. While using BLAS
calls prevents fusion benefits on GPUs, the transformation
relies on warp-level parallelism from the original code.

3.2 Dependence Analysis
To ensure the safety of the tile fusion transformation, a de-
pendence analysis is essential to guarantee the correct order
of iterations after fusion. The dependence analysis fuses
loops if the loop headers are compatible and all three kinds
of dependencies, i.e., flow, anti-, and output dependencies,
in the original program are preserved. Compatibility of two
loops means both loops have the same number of iterations
but not necessarily the same loop index expressions. Since
the loop fusion lowering discussed in Section 3.1 does not
change the order of statements within each loop body and
loops are assumed to be parallel, the focus of dependency
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analysis for correctness is on dependencies between iter-
ations of the two annotated loops with fprange. Because,
when the two loops are fused, their accesses will be in the
same scope, causing dependence violations if the order of
iterations is not determined properly. This section discusses
how dependencies between the two loops are satisfied.
𝑙1 and 𝑙2 represent the two loop nests labeled with fprange

to be fused. We assume there are no basic blocks between
𝑙1 and 𝑙2, or that basic blocks can be safely moved after loop
𝑙2. All statements are internally converted to static single
assignment (SSA) form. 𝑙1 = {𝑖1, ..., 𝑖𝑛} and 𝑙2 = { 𝑗1, ..., 𝑗𝑛}
are loop iterators in the two loops. D is the set of 𝑘 data
spaces/arrays, 𝐷1, 𝐷2, ..., 𝐷𝑘 , where the numbering does not
indicate a sequence. 𝑅𝑙→𝐷𝑑

(𝐼 ) and𝑊𝑙→𝐷𝑑
(𝐼 ) are access func-

tions where 𝑅 and𝑊 represent, respectively, a read from and
a write to data space 𝐷𝑑 in one iteration of 𝑙 . We can derive
any kind of dependency across the two loops; for example,
the derivation of flow dependency is shown in Equation 1:

{𝐽 → 𝐼 |𝐼 ∈ 𝑙1 ∧ 𝐽 ∈ 𝑙2 ∧ 𝐷𝑑 ∈ D∧
𝑅𝑙2→𝐷𝑑

(𝐽 ) ∩𝑊𝑙1→𝐷𝑑
(𝐼 ) ≠ ∅} (1)

output dependence can be defined as expected. The output
dependency within each loop or between loops are resolved
by using atomic operations when happens.

Since some data access functions in the flow dependence
condition are non-affine at compile time, the tile fusion trans-
formation ensures them by generating code that enforces a
partial order at runtime, which is represented by T in List-
ing 3. The fusion transformation generates a dependency
DAG𝐺 to compute the flow dependencies between iterations
of the fused loops(𝐼 and 𝐽 ), as shown in Equation 1. When
𝐺𝑖 𝑗 = 1, it means iteration 𝑗 ∈ 𝐽 should be executed after
iteration 𝑖 ∈ 𝐼 . To generate the DAG, the flow dependence
relations between statements are calculated and then used to
generate code that constructs𝐺 . Listing 5 shows the general
code that is generated for computing dependencies across
two loop bodies based on Equation 1. The code can detect
dependencies between iterations for any type of affine or
non-affine access functions. The generated code iterates over
all write accesses of 𝑙1 to check for overlaps with read ac-
cesses of 𝑙2 to detect an existing read-after-write dependency
(line 7 of Listing 5). Each loop iterator in 𝑙1 and 𝑙2 is defined
using its lower bound, upper bound, and indent.

Listing 5: General form of dependency DAG for partial
order when loop iterators i1 and j1 are fused based on
Equation 1.
1 for(j1=j1_lb; j1<j1_ub; j1+= j1_ind)

2 ...

3 for(jn=jn_lb; jn<jn_ub; jn+= jn_ind)

4 for(i1=i1_lb; i1<i1_ub; i1+= i1_ind)

5 ...

6 for(in=in_lb; in<in_ub; in+= in_ind)

7 if(𝑅𝑙2→𝐷𝑑
( 𝑗1, ..., 𝑗𝑛) ==𝑊𝑙1→𝐷𝑑

(𝑖1, ..., 𝑖𝑛))
8 G[j1]. append(i1);

For the GeMM-SpMM example shown in Listing 4, the
dependence relations for computing the dependence DAG
are shown in Equation 2. 2D array indexing is shown linearly.

{[ 𝑗1] → [𝑖1] : 0 ≤ 𝑖1, 𝑗1 < 𝑛

∧𝐴𝑝 [ 𝑗1] < 𝑗2 < 𝐴𝑝 [ 𝑗1 + 1] ∧ 0 ≤ 𝑖3, 𝑗3 < 𝑐𝐶𝑜𝑙

𝐴𝑖 [ 𝑗2] ∗ 𝑐𝐶𝑜𝑙 + 𝑗3 = 𝑖1 ∗ 𝑐𝐶𝑜𝑙 + 𝑖3}
(2)

Generating code for the set of relations in Equation 2 requires
six nested loop to iterate over 𝑖1, 𝑗1, 𝑖2, 𝑗2, 𝑖3, 𝑗3, which
would make the DAG creation𝑂 (𝑛×𝑏𝐶𝑜𝑙 ×𝑐𝐶𝑜𝑙2×𝑛𝑛𝑧). We
apply a set of symbolic calculations to simplify the relations.
We treat access functions symbolically and as mathematical
functions to find where accesses are equal at compile time,
when possible. For example, for the GeMM-SpMMDAG code,
the constraint 𝐴𝑖 [ 𝑗2] ∗ 𝑐𝐶𝑜𝑙 + 𝑗3 = 𝑖1 ∗ 𝑐𝐶𝑜𝑙 + 𝑖3 can be
simplified to 𝐴𝑖 [ 𝑗2] = 𝑖1 because 𝑖3 and 𝑗3 have the same
iteration space. An efficient dependenceDAGGeMMSpMM after
symbolic simplification is shown in Listing 6. This function
can be further simplified by removing the if condition, since
the condition is always true with the assignment in place,
making the function perform in 𝑂 (𝑛𝑛𝑧).

Listing 6: Dependency function in Listing 2 for the
input code in Listing 1.
1 Graph DependenceDAGGeMMSpMM(A){

2 Graph G(A.n); // Graph is a 2D vector

3 for(j1=0; j1<A.n; j1++)

4 for(j2=Ap[j1]; j2<Ap[j1+1]; j2++)

5 if (Ai[j2] == j1)

6 G[j1]. append(Ai[j2]);

7 return G;

8 }

3.3 Compiler Implementation
We implement the tile fusion transformation as a Python-
to-C++ code generator. The input Python code is converted
to SSA form using the Numba compiler [35]. Numba is a
compiler for Python that converts Python code to an inter-
mediate representation (IR), applies a series of optimizations,
and finally converts it to LLVM [36] IR and machine code.
We use Numba because it enables the use of features such
as SSA form and provides existing structures for identifying
loops and their data accesses.
From the SSA form, data access functions, loop iterators,

and their bounds are extracted. First, intersections of read
and write accesses are extracted to find the three types of
dependencies. During this process, it is assumed that the
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bodies of the two loops annotated with fprange are in the
same scope. For each pair of flow dependencies, we list the
iteration space of indices as data access functions. Data ac-
cess functions are converted to SymPy [39] expressions so
that symbolic simplification can be applied. SymPy is a pack-
age that supports working with symbolic expressions. For
dependence analysis, a list of data spaces and their access
functions are used. After analysis is complete, the fused code
and dependence DAG generator are generated as C++ or
CUDA library code.
We directly convert the SSA form into C++ by lowering

parallel_for to OpenMP directives for CPU parallelism:
#pragma omp parallel for. For CUDA code, the parallel
loop is removed and replaced with a thread ID initialized by
the grid size. The fused loop variable is replaced through-
out the loop bodies with the thread ID variable. While this
paper focuses on non-affine dependencies, affine dependen-
cies, such as those with one-to-one dependencies or affine
indexing, are also supported and used where applicable.

4 TILE FUSION SCHEDULER
The tile fusion scheduler, outlined in Algorithm 1, constructs
a fused tile schedule at runtime based on the sparsity pattern.
This subsection explains inputs, output, objective, and its
two-step process.

Inputs and output. The tile fusion scheduler, as outlined
in Algorithm 1, takes as input the dependency graph 𝐺 , the
number of columns in matrices 𝐵 and𝐶 denoted by 𝑏𝐶𝑜𝑙 and
𝑐𝐶𝑜𝑙 , architecture-specific parameters including the number
of physical cores 𝑝 and cache size per core 𝑐𝑎𝑐ℎ𝑒𝑆𝑖𝑧𝑒 , and
a heuristic parameter 𝑐𝑡𝑆𝑖𝑧𝑒 . The iteration space of the two
loops, 𝐼 and 𝐽 are provided as inputs. The output is a set of
fused tiles T . The graph𝐺 represents dependencies between
the 𝑛 iterations of the two fused loops, where 𝐺𝑖, 𝑗 = 1 indi-
cates that iteration 𝑗 of the second loop depends on iteration
𝑖 of the first loop. Each fused tile in T is represented as T𝑤,𝑣

where𝑤 and 𝑣 signify the wavefront number and tile num-
ber, respectively. A wavefront is a set of iterations that can
execute independently without violating correctness.

Objective and Constraints. The objective of the tile fusion
scheduler is to maximize the fused ratio across all tiles T
while tiles fit into fast memory with two wavefronts or less.
The fused ratio is calculated as the total iterations of the
second computation within the first wavefront divided by
the total number of iterations, as shown in Equation 3:

𝑓 𝑢𝑠𝑒𝑑_𝑟𝑎𝑡𝑖𝑜 =

∑ | T0 |
𝑣=0 |𝐽0𝑣 |
|𝐼 | + |𝐽 | (3)

where 𝐽𝑤𝑣 denotes the list of iterations from the second
operation in tile T𝑤𝑣 and 𝐼 and 𝐽 shows the list of all itera-
tions (or iteration space) of the first and second operations,

Algorithm 1: Tile Fusion Scheduler
Input : 𝐺 , 𝑏𝐶𝑜𝑙 , 𝑐𝐶𝑜𝑙 , 𝑝 , 𝑐𝑎𝑐ℎ𝑒𝑆𝑖𝑧𝑒 , 𝑐𝑡𝑆𝑖𝑧𝑒 , 𝐼 , 𝐽
Output : T
/* Step 1: Coarse Tile Fusion */

1 if ⌈|𝐼 |/𝑐𝑡𝑆𝑖𝑧𝑒⌉ ≥ 𝑝 then 𝑡 ← 𝑐𝑡𝑆𝑖𝑧𝑒 else 𝑡 ← ⌈|𝐼 |/𝑝⌉
2 F ← ({}, {})
3 for 𝑖 ∈ 𝐼 do
4 𝑣 ← 𝑖/𝑡
5 F0,𝑣 ← F0,𝑣 ∪ 𝑟𝑎𝑛𝑔𝑒 (𝑖, 𝑖 + 𝑡)
6 for 𝑗 ← 𝑖 𝑡𝑜 𝑖 + 𝑡 ∧ 𝑗 ∈ 𝐽 do
7 if (𝑖 < 𝑖𝑛𝐸𝑑𝑔𝑒𝑠 (𝐺, 𝑗) < 𝑖 + 𝑡 ) then F0,𝑣 ← F0,𝑣 ∪ 𝑗

8 else F1,𝑣 ← F1,𝑣 ∪ 𝑗

9 𝑗 ← 𝑗 + 1
10 end
11 𝑖 ← 𝑖 + 𝑡
12 end
13 F1,𝑣 ← 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 (F1,𝑣, 𝑡)

/* Step 2: Fused Tile Splitting */

14 for𝑤 ← 0 𝑡𝑜 2 do
15 for 𝑣 ← 0 𝑡𝑜 |F𝑤 | do
16 if 𝑐𝑜𝑠𝑡 (F𝑤,𝑣, 𝑏𝐶𝑜𝑙, 𝑐𝐶𝑜𝑙) > 𝑐𝑎𝑐ℎ𝑒𝑆𝑖𝑧𝑒 then

T𝑤 ← T𝑤 ∪ 𝑠𝑝𝑙𝑖𝑡 (F𝑤,𝑣, 𝑏𝐶𝑜𝑙, 𝑐𝐶𝑜𝑙, 𝑐𝑎𝑐ℎ𝑒𝑆𝑖𝑧𝑒)
17 else T𝑤 ← T𝑤 ∪ F𝑤,𝑣 )
18 𝑣 ← 𝑣 + 1
19 end
20 𝑤 ← 𝑤 + 1
21 end

respectively. T0 is the set of tiles in the first wavefront. Oper-
ator |.| indicates the cardinality of a set or the size of a list.
The tile fusion scheduler maximizes the fused ratio while
adhering to constraints on load balance and locality. The
load balance constraint enforces a maximum of two wave-
fronts and a minimum of 𝑝 tiles per wavefront, expressed
as ∀0 ≤ 𝑤 < 2; |T𝑤 | ≥ 𝑝 . A single wavefront is suffi-
cient when the graph exhibits enough connected compo-
nents, while two wavefronts is the minimum provide flexibil-
ity to accommodate varying fused ratios. The load balance
constraint ensures minimum number of barriers, which is
two, while ensuring enough workloads for all cores. The
locality constraint ensures a data movement cost for a tile
𝑇𝑤𝑣 remains below the cache size per core, formalized as
∀𝑤, 𝑣 ; 𝑐𝑜𝑠𝑡 (T𝑤,𝑣) < 𝑐𝑎𝑐ℎ𝑒𝑆𝑖𝑧𝑒 where 𝑐𝑜𝑠𝑡 (T𝑤,𝑣) is data
movement cost of 𝑇𝑤𝑣 .
Figure 1b shows an example DAG 𝐺 . There is an edge

from the first iteration of GeMM to the second iteration of
SpMM thus 𝐺1,2 = 1. The output schedule in Figure 3b has
three tiles. For example, T0,1 = (5, 6) ∈ 𝐼 ∪ 6 ∈ 𝐽 .

Step 1. The first step of the tile fusion scheduler constructs
an intermediate fused schedule F comprising uniform coarse
fused tiles to maximize the fused ratio while adhering to the
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load balance constraint. The scheduler identifies fused itera-
tions from consecutive tiles to enhance spatial locality and
reduce scheduling overhead. The algorithm ensures that iter-
ations within different tiles of a wavefront are independent,
eliminating the need for synchronization.
Lines 1–13 of Algorithm 1 outline the creation of the in-

termediate fused tiling F . The scheduler initially computes
a uniform tile size 𝑡 based on the provided coarse tile size
𝑐𝑡𝑆𝑖𝑧𝑒 in line 1. As shown, the tile size is set to 𝑐𝑡𝑆𝑖𝑧𝑒 if the
number of tiles, calculated as ⌈|𝐼 |/𝑐𝑡𝑆𝑖𝑧𝑒⌉, exceeds or is equal
to 𝑝 otherwise, 𝑡 is set to |𝐼 |/𝑝 . This ensures at least 𝑝 tiles
per wavefront, satisfying the load balance constraint. Each
fused tile F0,𝑘 is constructed from 𝑡 consecutive iterations of
𝐼 as shown in line 5 and a subset of 𝑡 consecutive iterations of
𝐽 as specified in lines 6–13. An iteration from 𝐽 is included in
tile F0,𝑘 only if all its incoming edges are already present in
the tile, as indicated in line 7. Iterations that fail this criterion
are assigned to tile F1,𝑘 in the second wavefront as shown in
line 8. The iterations in the second wavefront, F1, are evenly
distributed across 𝑡 tiles using the 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 routine in line 13
to maintain load balance in the second wavefront.

1 2 3 4

1 2 3

4

5 6

6

5

7 8 9

8 9

7

F0,0 F0,1

(a) After Step 1

1 2 3 4

1 2 3

4

5 6

6

5

7 8 9

8 9

7

Thread 0 Thread 1 Thread 2

T0,0T0,1 T0,2
(b) After Step 2

Figure 3: The output of the two steps of the tile fusion
scheduler for the sparse matrix in Figure 1 and the
fused code in Listing 4. Colored circles represent itera-
tions of loop 𝑖1 and edges represent dependence.

The coarse tile size parameter, 𝑐𝑡𝑆𝑖𝑧𝑒 , used to determine 𝑡
in line 1 of Algorithm 1, is selected empirically to maximize
the fused ratio across matrices. To select 𝑐𝑡𝑆𝑖𝑧𝑒 , we calcu-
late the average fused ratio across all SuiteSparse matrices
as a function of tile size. While a larger tile size generally
increases the fused ratio, it also reduces parallelism and po-
tentially impacts load balance. Because after a tile size of
2048, the fused ratio increases at a lower rate, we empirically
set 𝑐𝑡𝑆𝑖𝑧𝑒 to 2048 to achieve a balance between the fused
ratio and load balance.
Figure 3a illustrates the output of step 1 for the example

presented in Figure 1. Given 𝑐𝑡𝑆𝑖𝑧𝑒 = 4 and 𝑝 = 3, the tile

size 𝑡 is set to 4. Figure 3a displays two coarse tiles. In tile F0,0,
iterations {1, 2, 3} ⊂ 𝐽 depend solely on iterations {1, 2, 3} ⊂
𝐼 which are already present in the tile. Consequently, this
tile can be executed independently in parallel.

Step 2. The second step of the tile fusion scheduler refines
the coarse tiles generated in the first step, F , to ensure they
fit within the fast memory. This process involves splitting
tiles as needed to meet the locality constraint. The sched-
uler iterates over F , evaluating the data movement cost of
each tile using a cost model. Tiles exceeding the fast mem-
ory capacity are subdivided to accommodate the memory
constraint.
The second step of the tile fusion scheduler, outlined in

Lines 14–21 of Algorithm 1, refines the coarse tiles. The
algorithm iterates over all tiles in both wavefronts, F0 and
F1, computing the data movement cost for each tile using
the 𝑐𝑜𝑠𝑡 function in line 16. Tiles exceeding the fast memory
capacity, 𝑐𝑎𝑐ℎ𝑒𝑆𝑖𝑧𝑒 , are recursively split into smaller tiles,
each fitting within the fast memory, using the 𝑠𝑝𝑙𝑖𝑡 routine
in line 16. The resulting tiles are added to the same wavefront
in the final schedule T .

Data movement cost. The tile fusion scheduler employs a cost
model to estimate data movement for each coarse tile. As
indicated in line 16 of Algorithm 1, the data movement cost
for tile T𝑖, 𝑗 is calculated based on given values of 𝑏𝐶𝑜𝑙 and
𝑐𝐶𝑜𝑙 , as defined by Equation 4:

𝑐𝑜𝑠𝑡 (T𝑖, 𝑗 , 𝑏𝐶𝑜𝑙, 𝑐𝐶𝑜𝑙) =
(𝑛𝑧 (T𝑖, 𝑗 ) + 𝑢𝑐 (T𝑖, 𝑗 ) + 𝑡 + |𝐽𝑖, 𝑗 |) ∗ 𝑐𝐶𝑜𝑙 + 𝑖𝑑𝑥 (4)

where, 𝑛𝑧 (T𝑖, 𝑗 ) is the number of unique nonzeros in the tile
from 𝐴 and 𝐵. When 𝐵 is dense, all 𝑛 × 𝑏𝐶𝑜𝑙 elements are
considered. The term 𝑢𝑐 (T𝑖, 𝑗 ) denotes the number of nonze-
ros with unique columns in the tile, |𝐽𝑖, 𝑗 | is the number of
fused iterations from the second operation and 𝑖𝑑𝑥 is the
indexing overhead associated with sparse matrices.

Figure 3b presents the final fused scheduleT , derived from
the coarse fused tile schedule F in Figure 3a. The schedule
F comprises two coarse fused tiles, each annotated with its
corresponding data communication cost. Assuming 𝑏𝐶𝑜𝑙 =
𝑐𝐶𝑜𝑙 = 1 and 𝑡 = 4, the cost of F0,0 is calculated using
Equation 4. Since this cost is below the 𝑐𝑎𝑐ℎ𝑒𝑆𝑖𝑧𝑒 threshold
of 30, the tile is directly incorporated into T . Conversely, F0,1
exceeds the 𝑐𝑎𝑐ℎ𝑒𝑆𝑖𝑧𝑒 limit and is subsequently divided into
two smaller tiles, each satisfying the memory constraint.

Computational Complexity. The first step of the algo-
rithm examines 𝑖𝑛𝐸𝑑𝑔𝑒𝑠 for only 𝑡 columns of𝐺 within each
tile of size 𝑡 . As tiles are disjoint, 𝑖𝑛𝐸𝑑𝑔𝑒𝑠 is accessed once per
iteration, resulting in an overall time complexity of 𝑂 (𝑛𝑛𝑧)
for this step. Accessing incoming edges for a given iteration
can be performed in linear time. The second step focuses
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Platform IceLake CascadeLake EPYC
sockets × cores 2 × 40 2 × 20 2 × 32

L1/L3 Cache Sizes 40K/61M 32K/28M 32K/256M
Compiler ICC 2024 ICC 2024 GCC v.11
BLAS MKL’24 [57] MKL’24 BLIS [55]

Table 1: CPU Platform details

on fused iterations in 𝐽 and their dependent iterations in I
during the splitting process. Since the set of iterations is di-
vided by a factor of two in each split and each split operation
can potentially visit up to 𝑛𝑛𝑧 edges, the time complexity
of this step is 𝑂 (𝑛𝑛𝑧 ∗ 𝑙𝑜𝑔(𝑐𝑡𝑆𝑖𝑧𝑒)). The second wavefront
processes unfused iterations, requiring 𝑂 ( |𝐽 |) time. Conse-
quently, the overall time complexity of the second step is
𝑂 ( |𝐽 | + 𝑛𝑛𝑧 ∗ 𝑙𝑜𝑔(𝑐𝑡𝑆𝑖𝑧𝑒)).

5 EXPERIMENTAL RESULTS
This section evaluates the performance of tile fusion against
existing fused and unfused implementations for sparse ma-
trices on three shared-memory processors and a GPU archi-
tecture. Overall, tile fusion outperforms both unfused and
best-fused code, achieving GMean speedups of 1.98× and
3.52×, respectively. Additionally, tile fusion exhibits scalabil-
ity across 40, 64, 80 CPU cores and GPU architectures.

5.1 Setup
5.1.1 Environment. All CPU experiments were conducted
on the processors listed in Table 1 to assess the cross-platform
performance of tile fusion. Unless otherwise specified, ex-
periments were performed on single-socket configurations.
For GPU experiments, an A100 GPU is used with CUDA
version 12.4. Given the prevalence of single-precision (SP)
computations in GNNs [64], all experiments employed SP
arithmetic. To evaluate performance across varying matrix
sizes, we tested three column dimensions for matrix 𝐵: 32,
64, and 128, which align with typical feature dimensions
and hidden layer sizes in GNNs [24, 29, 56]. Each reported
time represents the median of seven runs. For each matrix,
theoretical FLOPs were calculated for the unfused code and
used as a baseline for all implementations. The 𝑐𝑎𝑐ℎ𝑒𝑆𝑖𝑧𝑒
parameter in Algorithm 1 was set to the sum of L1, L2, and
L3 cache sizes per core. Close thread binding was employed,
with each thread pinned to a dedicated physical core. We
only report the fused code’s execution time for matrix-based
experiments. The case study includes both scheduler and
fused code execution time.

5.1.2 Matrix Dataset. We selected 233 matrices from the
SuiteSparse [15] repository to evaluate GeMM-SpMM and
SpMM-SpMM computations. To represent scientific com-
puting and machine learning applications, we select (I) all
132 symmetric positive definite (SPD) matrices with more
than 105 nonzero elements, and (II) all 111 square, non-SPD,
graph-related matrices with more than 105 nonzero elements

and either integer or real data types. A matrix was classi-
fied as graph-related if its metadata included the keyword
“graph”. We reorder matrices with a fused ratio lower than
0.01% using Cuthill-McKee [14] reordering.

5.1.3 Unfused Implementations. To establish an unfused
baseline for comparison, we employed the OneAPI MKL [57]
library to implement unfused versions of the operations. As
MKL does not provide fused GEMM or SpMM routines, we
used the cblas_?gemm and mkl_sparse_?_mm functions sep-
arately. The number of threads in MKL is set to the number
of physical cores using mkl_set_num_threads(). To isolate
the impact of tile fusion, we also developed custom unfused
parallel implementations for both GeMM-SpMM and SpMM-
SpMM, incorporating the same optimizations.

5.1.4 Fused Implementations. Tile fusion, proposed in this
work, is implemented in Python and C++1 and com-
pared against existing fused implementations and custom-
developed implementations of prior fusion techniques.
To compare the fused GeMM-SpMM of tensor compil-

ers, we utilize generated C++ code from the TACO [30] and
SparseLNR [18] for the expression D(i,l) = A(i,j) *
B(j,k) * C(k,l), where 𝐴 is sparse and the other matrices
are dense. The best performance from both generated codes
is reported as Best of Tensor Compilers. The generated code
by tensor compilers for the fused GeMM-SpMM is shown in
Listing 7. To assess the impact of vectorization, we further
optimize the generated code in Listing 7 by usingMKLGeMV
instead of the nested loops in lines 5-11. For SpMM-SpMM,
tensor compilers lack support for fused operations and were
excluded from the benchmark.

Listing 7: Tensor compiler code for GeMM-SpMM
1 #pragma omp parallel for schedule(runtime)

2 for(int i=0; i<n; i++){

3 for(int j1=A.p[i]; j1<A.p[(i+1)]; j1++){

4 int j = A.i[j1];

5 for(int k=0; k<bCol; k++){

6 int iB = j * bCol + k;

7 for (int l = 0; l<cCol; l++) {

8 int iC = k*cCol+l;

9 int iD = i*cCol+l;

10 D[iD] += (A.x[j1]*B[iB]) * C[iC];

11 }}}}

Prior runtime schedulers [16, 32] are not publicly available;
we implemented their core concepts based on the authors’
descriptions. For the communication-avoiding (CA) [16] ap-
proach, we evenly partitioned iterations of the first loop and
included all dependent iterations in the same partition, re-
sulting in an overlapped tiling implementation. For sparse

1publicly available from https://github.com/SwiftWare-Lab/tile-fusion
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Figure 4: Tile Fusion GeMM-SpMM speedup on IceLake (top), CascadeLake (middle), and EPYC (bottom). Tile
fusion outperforms the best performing code in most matrices and bCols.
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Figure 5: GeMM-SpMM performance of fused methods

tiling [32], we equally divided iterations of the first loop and
incorporated dependent iterations from the second loop into
each partition, using atomic operations and barriers to man-
age dependencies, yielding an atomic tiling implementation.
These two methods are explained in [17] using an example.

5.2 GEMM-SpMM Evaluation
5.2.1 Performance in FLOPs. Figure 4 presents the overall
performance of GeMM-SpMM using tile fusion and unfused
implementations on the processors listed in Table 1 for three
different values of𝑏𝐶𝑜𝑙 . Tile fusion outperformsMKL for 90%
of the matrices across all 𝑏𝐶𝑜𝑙 values. Table 2 summarizes
the speedup achieved by tile fusion for GeMM-SpMM.
Tile fusion performance improves with increasing 𝑏𝐶𝑜𝑙

values due to higher arithmetic intensity. The GMean perfor-
mance rises from 427 GFLOP/s at 𝑏𝐶𝑜𝑙 = 32 to 1036 GFLOP/s
at 𝑏𝐶𝑜𝑙 = 128. In contrast, the MKL implementation exhibits
a performance increase from 287 GFLOP/s to 630 GFLOP/s

Baseline bCol Icelake CascadeLake EPYC

Unfused MKL
32 1.48 1.63 -
64 1.42 1.31 -
128 1.55 1.36 -

Unfused Baseline
32 1.41 1.41 1.64
64 1.49 1.25 1.67
128 1.64 1.13 1.73

Table 2: The tile fusion performance for GeMM-SpMM
with respect to unfused baselines for three bCol values,
32, 64, and 128 and on three architectures.

over the same 𝑏𝐶𝑜𝑙 range. The enhanced arithmetic intensity
within fused tiles provides a greater advantage for tile fusion.

Tile fusion shows a slightly better performance on SPD
matrices compared to graph matrices. This difference is at-
tributed to the average fused ratio being twice as high for
SPD matrices. Moreover, the larger L3 cache of the EPYC
processor amplifies the performance gap between tile fu-
sion and the unfused baseline for larger matrices. Tile fusion
also applies to matrix multiplications when transpose of 𝐶
is provided. Tile fusion provides a GMean of 1.48×, 1.42×,
and 1.55× over MKL on IceLake for 𝑏𝐶𝑜𝑙 = 𝑐𝐶𝑜𝑙=32, 64, 128,
respectively.
Figure 5 compares the performance of tile fusion with

other fused implementations on CascadeLake. Tile fusion
surpasses tensor compilers, atomic tiling, and overlapped
tiling with GMean speedups of 9.4×, 13.6×, and 3.5×, re-
spectively. Tensor compilers tend to underutilize memory
hierarchies due to their heavy reliance on vector operations.

5.2.2 Ablation Study. This section examines the impact of
tile fusion on locality and load balance, as well as the contri-
bution of the scheduler’s two steps to overall performance.
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Figure 7: GeMM-SpMM Potential Gain (lower is bet-
ter). Despite creating coarsened tiles to fit the cache,
tile fusion schedules well-balanced workloads that are
comparable to fine-grained workloads of the Unfused
Baseline.

For this analysis, we selected all 111 graph matrices from the
dataset and conducted experiments on CascadeLake.
To assess the impact of tile fusion on locality, we mea-

sure average memory access time (AMT) as AMT = hit time
+ miss ratio * miss penalty for all three levels of caches.
We use PAPI [54] performance counters, PAPI_L1_TCM,
PAPI_L2_TCM, PAPI_L3_TCM to measure L1 accesses, L2 ac-
cesses, L3 accesses, and main memory accesses, respectively
to compute hit and miss ratios. Figure 6 shows the aver-
age memory access time for the graph matrices. Tile fusion
demonstrates a 1.1-1.3× reduction in AMT compared to the
unfused implementation for 92% of the graph matrices, high-
lighting the significant role of improved locality in perfor-
mance gains.
To evaluate the impact of tile fusion on load balance, we

measure the potential gain (PG), defined as the maximum
potential time savings if all threads were perfectly balanced.
We calculate PG as the average difference between the maxi-
mum thread execution time and the execution time of other
threads, using the PAPI counter PAPI_TOT_CYC to measure
thread-level cycles. Figure 7 compares the PG of tile fusion to
that of the unfused implementation. While tile fusion demon-
strates load balancing comparable to the unfused code, the
latter exhibits slightly better load balance due to a larger
number of finer-grained tasks.
Figure 8 presents a performance breakdown of the two-

step tile fusion process. The first step enhances sequential
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Figure 9: GeMM-SpMM strong scalability on IceLake,
CascadeLake, EPYC, from left to right respectively

baseline performance (Figure 1b) by a GMean speedup of
6.7×. The second step contributes to performance improve-
ments for 90% of the matrices analyzed. While the first step
introduces threading and improves locality, the second step
refines load balance and further optimizes locality using the
cost model in Equation 4. For the selected graph matrices,
the chosen tile sizes range from 64 to 2048.

5.2.3 Scalability Analysis. This section evaluates the strong
scaling of tile fusion across varying thread and sockets. Fig-
ure 9 illustrates the geometric mean (GMean) performance
across all matrices for different thread counts and architec-
tures. While tile fusion does not incorporate explicit NUMA
optimizations, its disjoint coarse-grain partitions effectively
reduce memory movement between sockets, enabling scala-
bility on NUMA systems. As the number of threads increases,
the performance gap between tile fusion and the unfused
implementation widens. This trend is attributed to the grow-
ing importance of balancing locality and load distribution in
highly parallel environments, where tile fusion excels.

Baseline bCol Icelake CascadeLake EPYC

Unfused MKL
32 1.43 1.30 -
64 1.38 1.19 -
128 1.51 1.30 -

Unfused Baseline
32 1.35 1.19 1.14
64 1.48 1.23 1.17
128 1.53 1.26 1.19

Table 3: Tile Fusion GMean speedups for SpMM-SpMM
over three bCol values, 32, 64, and 128 on the three
CPU architectures.
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Figure 10: Tile fusion improves the performance of SpMM-SpMM on Ice Lake (top), Cascade Lake (middle), and
EPYC (bottom) compared to an unfused baseline.

5.2.4 SpMM-GeMM Performance. Tile fusion is also applied
to where SpMM followed by GeMM, i.e. SpMM-GeMM. This
variant leads to an affine dependence and thus fusion is done
at compile time. But still the tile fusion scheduler enables
data reuse where it leads to a speedups of up to 2.17× over
UnfusedMKLwith a GMean speedup of 1.33×. The tile fusion
performance ranges from 33 to 333 GLOP/s when 𝑏𝐶𝑜𝑙 =

𝑐𝐶𝑜𝑙 = 64.

5.2.5 Scheduler Overhead analysis. To assess the amortized
cost of the scheduler, we calculate the number of fused code
executions required to offset the scheduler overhead for each
matrix in the dataset. Scheduler overhead is amortized after
1–100 fused code executions for the dataset. Given the fre-
quent use of GeMM-SpMM in applications like GNN training,
this overhead becomes insignificant.

5.3 SpMM-SpMM Evaluation
Figure 10 compares the SpMM-SpMM performance of tile fu-
sion with unfused implementations. Tile fusion outperforms
both the unfused baseline and MKL implementations in 88%
and 91% of tested matrices, respectively, across all 𝑏𝐶𝑜𝑙 val-
ues. Detailed speedups for each architecture are presented in
Table 3. Overall, SpMM-SpMM exhibits lower performance
compared to GeMM-SpMM for the same set of matrices due
to the inherent memory-bound nature of SpMM.

Tile fusion achieves GMean speedups of 9.3×, 13.2×, and
13.7× over atomic tiling for 𝑏𝐶𝑜𝑙 values of 32, 64, and 128, re-
spectively. A similar trend is observed for overlapped tiling,
with tile fusion delivering GMean speedups of 5×, 6.5×, and
7.2× for the same 𝑏𝐶𝑜𝑙 range. The increased redundant com-
putations in overlapped tiling, as exemplified by matrices

Id Name Vertices Edges
0 Amazon2k [43] 303,296 586,902
1 Coauthor CS [52] 18,333 163,788
2 Coauthor Physics [52] 34,493 495,924
3 Cora [5] 19,793 63,421
4 DeezerEurope [49] 28,281 185,504
5 Facebook [48] 22,470 342,004
6 Flickr [63] 89,250 899,756
7 Github [48] 37,700 578,006
8 OGBN Arxiv [26] 232,965 114,615,892
9 OGBN products [26] 2,449,029 123,718,152
10 OGBN proteins [26] 132,534 79,122,504
11 PPI [65] 56,944 818,716
12 Reddit [63] 232,965 23,213,838
13 Yelp [63] 716,847 13,954,819

Table 4: Datasets used for evaluating GCN training

G2_circuit and inline_1 with 126,487 and 2,844,351 redun-
dant iterations compared to 150,102 and 503,712 rows, re-
spectively, contribute significantly to the performance gap.

5.4 GPU Evaluation
Figure 11 shows the performance of tile fusion applied to out-
ermost loops of SpMM operations on an A100 GPU. The base-
line is the unfused SpMM code with similar warp-level par-
allelism. Tile fused SpMM-SpMM provide a GMean speedup
of 1.18×, 1.16×, and 1.15× for when bCol=cCol is 32, 64, and
128, respectively. Tile fusion speedup range is between 0.2×
– 9× and it is faster than the unfused baseline in more than
68% of matrices.



Loop Fusion in Matrix Multiplications with Sparse Dependence ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

0 200 400 600 800
Unfused GFLOP/s

0

1

2

3

4
Sp

ee
du

p 
ov

er
 

 U
nf

us
ed

 B
as

el
in

e

bCol=32

0 200 400 600 800
Unfused GFLOP/s

0

1

2

3

4
bCol=64

0 200 400 600 800 1000
Unfused GFLOP/s

0

1

2

3

4
bCol=128

Figure 11: Tile Fusion improves the SpMM-SpMM performance on A100 GPU across bCol values.
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6 CASE STUDIES
6.1 GNN Training
We use training a standard Graph Convolutional Network
(GCN) as a case study to evaluate the performance of tile
fusion. GCNs, as introduced in Kipf and Welling (2016) [29],
are a common type of GNN where each vertex learns from
its neighbors within the graph. GCN training involves an
initial normalization of the input sparse graph𝐴 followed by
iterative minimization of a loss function to compute hyper-
parameters. Both the forward and backward passes within
each iteration include GeMM and SpMM operations, which
collectively account for 50-90% of the training time. Given
that the sparsity pattern of 𝐴 remains constant during GCN
training, the tile fusion schedule can be computed once and
reused throughout the training process.

The GCN training process, enhancedwith tile fusion, takes
as input the graph’s adjacency structure𝐴, node feature data
𝐹 , embedding dimensions 𝑒𝐷𝑖𝑚, the number of processing
layers 𝑛𝐿𝑎𝑦𝑒𝑟𝑠 , and optimization settings 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 , and
produces the learned model parameters𝑊 and the calculated
loss 𝐿. For node classification, the correct node labels 𝐿𝑎𝑏𝑒𝑙𝑠
are used to compute the loss. The process begins with nor-
malization steps,𝐴 = 𝐸−1/2 (𝐴+𝐼𝑛)𝐸−1/2, where 𝐼𝑛 represents
an identity matrix and 𝐸 is a diagonal matrix of node degrees.
Subsequently, a schedule is created to optimize matrix op-
erations based on the structure of 𝐴. The training involves
repeated forward and backward computations. The forward
pass computes 𝐻𝑙 = 𝐴𝐻𝑙−1𝑊𝑙 , where 𝐻𝑙 is the output of the
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Figure 13: Tile fused SpMM-SpMM improves the Jacobi
solver performance over unfused code.

𝑙𝑡ℎ layer, and𝑊𝑙 is the corresponding weight matrix. This
operation is performed with TileFusedGeMMSpMM.
This evaluation examines the performance of GCN train-

ing using the optimized matrix multiplication implementa-
tion. The number of layers was set to 2, and the maximum
number of training iterations was set to 100, aligning with
typical GCN [29] model configurations. The optimized im-
plementation was integrated into PyTorch for direct compar-
ison with PyG. Datasets in Table 4, representing a range of
medium to large-scale graphs, were used. All experiments
were conducted on Ice Lake.

Figure 12 presents the performance of GCN training using
tile fusion and PyG. Tile fusion achieves geometric mean
(GMean) speedups of 3.84×, 2.33×, and 1.34× for 𝑒𝐷𝑖𝑚 of
32, 64, and 128, respectively. While tile fusion performs well
across 𝑏𝐶𝑜𝑙 values (shown in Table 2), PyG performs bet-
ter with larger 𝑒𝐷𝑖𝑚 values, altering the speedup trend. We
attribute this PyG behavior to matrix caching between for-
ward and backward passes. A 2-layer GCN with 100 training
iterations incurs 400 GeMM-SpMM calls, with 50% occurring
during the forward pass and the remaining 50% during the
backward pass. GeMM-SpMM computations account for up
to 90% of the total training time for large datasets. The sched-
uler is invoked only once during training and contributes
less than 0.5% to the overall execution time.
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6.2 Jacobi Linear Solver
To show the efficiency of the fused SpMM-SpMM in an end-
to-end application, we selected the Jacobi method for solving
a linear system of equations 𝐴𝑋 = 𝐵, where 𝑋 and 𝐵 are 𝑛 ×
𝑏𝐶𝑜𝑙 matrices. The Jacobi method is an iterative solver where
in each iteration 𝑘 , the solution is computed as 𝑋 (𝑘+1) =

𝐷−1 (𝐵− (𝐿+𝑈 )𝑋 (𝑘 ) ), where𝐴 is decomposed into 𝐿+𝑈 +𝐷 ,
and 𝐿,𝑈 , and 𝐷 are the lower, upper, and diagonal matrices,
respectively. In each iteration, the convergence with respect
to each column of 𝐵 is calculated, and a convergence flag
corresponding to that column is set separately.
As shown, in order to compute (𝐿 + 𝑈 )𝑋 (𝑘 ) , an SpMM

should be performed. To enable the application of fusing two
consecutive SpMM operations, two iterations of Jacobi are
unrolled, and then tile fusion is applied. The code is imple-
mented using double precision. Figure 13 shows the speedup
when𝑏𝐶𝑜𝑙 = 64 over Jacobi with an unfused implementation.
Tiled fused Jacobi provides a GMean speedup of 1.32× over
the unfused baseline.

7 RELATEDWORK
Loop transformation for sparse codes. Loop tiling and fu-
sion for sparse codes are established techniques for en-
hancing data locality. Extensive research has focused on
applying these techniques to SpMM [1, 25, 34, 42] and
GeMM [33, 57]. Tile fusion preserves data locality across
iterations of both GeMM and SpMM, leveraging existing
optimizations for these operations. Similar to the matrix sig-
nature approach [34] for SpMM-CSR, tile fusion employs
data communication costs to determine tile sizes. However,
as opposed to matrix signature that is applied to parallel
tiling, when applying to loop fusion, memory access within
loop bodies and shared data accesses should be taken into
account. Tile fusion uniquely considers shared elements be-
tween the two operations when constructing fused tiles. Tile
fusion also considers non-affine dependence due to fusion
that does not occur when tiling SpMM individually.
Compile-time fusion is commonly applied in scenarios

with affine dependencies [2]. While indirect memory ac-
cesses limit fusion opportunities, some optimizations remain
feasible. Tensor expression compilers [3, 18, 30, 37, 41, 60]
generate code for tensor expressions. Sparse tensor compil-
ers [18, 30, 41] specifically support fusing chain multiplica-
tions. However, the fused code generated by SparseLNR [18]
and TACO [30] transforms consecutive matrix operations
into matrix-vector operations, leading to suboptimal uti-
lization of the fast memory. There is a group of sparsity-
specific compilers for matrix multiplications such as DAS-
TAC [20, 21], SPLAT [23], sparse register tiling [59], and
partially strided codelets [8] that use sparsity for optimizing
code, but they do not use it to enable fusion across multiple

tensor operations. Loop-level dependence analysis within a
loop body in sparse codes is also supported in prior methods
such as the Sparse polyhedral model [40] to enable paral-
lelism. However, inter-loop dependence analysis is addition-
ally needed for loop fusion, which is addressed in tile fusion.

Runtime schedulers. Modeling parallel loops, such as con-
secutive matrix multiplications, as graphs [16, 32, 53] or
hypergraphs [45] is commonly used to enhance cache reuse.
These methods, tailored for shared memory processors, often
rely on either synchronization [32] or overlapped computa-
tion [16] to manage dependencies. The fused ratio and its
associated cost model in tile fusion can improve these meth-
ods. Sympiler [7, 9] uses DAG schedulers [10, 62] to build
an initial schedule of iterations and then fuses the schedule
with another loop using sparse fusion [12, 13]. The sparse
fusion scheduler is driven by a loop-carried dependence that
commonly occur in scientific solvers [11]. Tile fusion, in-
stead, uses a cost model to determine fused tiles since the
loops are parallel matrix multiplications.
GNN models such as FusedMM [4, 46] have focused on

fusing SDDMM-SpMM in multi-cores. For GCNs, which pre-
dominantly use GeMM-SpMM [19, 58], FusedMM offers an
efficient SpMM implementation, akin to an unfused imple-
mentation. Prior studies have optimized GNNs through sam-
pling techniques [38]. While this paper concentrates on full-
graph computations, sampling methods can further enhance
fused ratios. Existing GNN optimization approaches primar-
ily focus on optimizing the SpMM operation [27], transform-
ing GeMM-SpMM into vector operations [22], or employing
graph partitioning schemes [6, 38, 61], introducing redun-
dant computations [6] or synchronization overhead [38].

8 SUMMARY AND CONCLUSION
This paper presents tile fusion to enable the fusion of par-
allel loops with sparse dependencies, such as those found
in GeMM-SpMM and SpMM-SpMM. Tile fusion employs a
compile-time transformation to fuse two matrix multipli-
cation codes. The partial order and efficiency of the fused
code are ensured through a runtime scheduler. Tile fusion
provides a GMean speedup between 1.13× and 1.73× over
unfused code across CPUs and between 1.15× and 1.18×
on an A100 GPU. Tile fusion demonstrates an end-to-end
speedup of 2.33× and 1.3× in GNNs and Jacobi solvers.
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