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ABSTRACT

Preconditioned iterative sparse linear solvers are memory-efficient
for large scientific simulations, but the dependences between it-
erations introduced by preconditioners limit parallelization. This
issue is exacerbated on GPUs, which feature many parallel cores.
We propose a sparsified preconditioned conjugate gradient (SPCG)
solver that increases parallelism by reducing dependences through
sparsification, while preserving convergence behavior. We evaluate
the proposed SPCG using both ILU(0) and ILU(K) preconditioners
on a wide range of symmetric positive definite (SPD) matrices. The
proposed SPCG improves the performance of the iterative phase of
SPCG by a geometric mean speedup of 1.23X and 1.65X over the
non-sparsified PCG using ILU(0) and ILU(K), respectively on an
NVIDIA A100 GPU. SPCG also yields geometric mean end-to-end
speedups of 1.68% and 3.73X over the non-sparsified versions with
ILU(0) and ILU(K), respectively, on the same platform.
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1 INTRODUCTION

The solution to sparse linear systems represents a critical compu-
tation in a large number of scientific simulation domains. Sparse
linear systems are represented mathematically in Equation 1, where
matrix A is sparse, vector b is given, and vector x is unknown. This
work assumes A is symmetric positive definite (SPD).

Ax = b, x,beR™ A e R 1)

Two distinct approaches have arisen for solving sparse linear sys-
tems. Direct solvers are more robust, but do not scale well due to
large memory requirements. Iterative solvers, while less robust and
sensitive to conditioning, have the advantage of being more scal-
able; because their memory usage remain invariant to the matrix
structure. A common method to improve upon the robustness of
iterative solvers is through preconditioning the solution matrix.
Depending on the preconditioning choice, solver scalability and
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convergence are also affected. In this paper, we focus on a precondi-
tioned conjugate gradient (PCG). PCG uses a transformed version
of the n X n SPD linear system to improve convergence and solve
the linear system faster.

This paper focuses on a class of preconditioners that rely on
incomplete-LU factorization, deriving lower- and upper-triangular
factors of the matrix. ILU(0) has no fill-in, which means that no
additional nonzero elements are added after the factorization of the
preconditioner. We also consider ILU(K), which introduces fill-in to
produce the preconditioner’s factors. ILU(K) offers more stability
at increased complexity due to fill-in.

While preconditioning improves convergence of the solver, the
construction and applications of the preconditioner can itself be
costly. In dense ILU, the calculation for each row depends on the
previous one, making it a sequential computation. When sparse
matrices are used, not all columns have values, which makes it
possible to use wavefront parallelism to perform calculations in
parallel. In wavefront parallelism, independent iterations form a
wavefront and a synchronization mechanism is required after each
wavefront. Prior work [34, 36, 41] has used wavefront parallelism
successfully; however, a large number of synchronizations can
under-utilize GPU resources.

In this paper, we sparsify the linear system, eliminating nonzero
values that are less likely to impact convergence. We call this ap-
proach Sparsified PCG or SPCG. Through sparsification, the precon-
ditioning performs less computation and reduces data movement.
But more importantly, we may increase parallelism by reducing the
number of wavefront levels. Our findings suggest that SPCG can
outperform regular PCG with better convergence, and the paper
provides guidance on when SPCG can be effective and profitable.

The contributions of this paper are as follows:

(1) We present SPCG that uses a new wavefront-aware sparsifi-
cation approach for iterative solvers that improves perfor-
mance by reducing computation and data movement, and
increasing parallelism.

(2) We provide a detailed analysis of when SPCG is profitable,
based on matrix numerical characteristics and wavefront
reduction. Analysis evaluates the correlation between wave-
front reduction and performance improvement, portability
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Algorithm 1: Preconditioned Conjugate Gradient (PCG)

Input :Matrix A, preconditioner M, right-hand side b, tolerance e,
maximum iteration kpax
Output: Solution x
1 xo « initial guess (e.g., zero)

2 rp < b—Axo
3 2o <—M71}‘0

4 po — 2

5 for k « 0 to kpay do
6 if ||rr|| < € then
7 ‘ return xi

8 end

9 W — Apk

0| e gl

1 Xk41 < Xk + QP
12 Tkel & Tk — QWi
13| zZker — Ml
| e
15 Pr+1 < Zk1 + PrPic
16 end

1
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return xg .

across two GPUs and one CPU, and examines how applica-
tion domain impacts convergence.

(3) We present an implementation of the two solver variants for
GPUs that provides a gmean end-to-end speedup of 1.68x
and 3.73% over the original solvers with ILU(0) and ILU(K)
preconditioners on A100, respectively.

2 MOTIVATION

The PCG method is a well-known iterative solver for sparse linear
systems, especially in applications that exhibit SPD properties. A
variant of the PCG algorithm, known as left-preconditioned CG [40],
is described in Algorithm 1. As shown, PCG starts with an initial
guess and then calculates the residual vector r, where A is the
coeflicient sparse matrix and b is the right-hand side vector. For
a number of iterations j = 0,1, 2, ..., the algorithm computes the
step size using a preconditioner and calculates and updates the
solution and residual vectors until the convergence condition is
satisfied or the maximum number of iterations is reached. Several
other algorithms can operate on SPD matrices, but PCG is usually
the quickest and most reliable at solving those types of systems [6],
hence the method of choice here.

In PCG, the computational cost is dominated by the sparse
matrix-vector multiplication (SpMV) and the application of the
preconditioner, as shown in Lines 9, 15, and 13 of Algorithm 1.
While SpMV is inherently parallel, the primary challenge lies in the
efficient parallelization of the preconditioner application (Line 13),
which involves solving sparse triangular systems. Specifically, ap-
plying the preconditioner entails solving LUz, = r;, where
L and U are sparse lower and upper triangular matrices. This op-
eration requires a forward substitution followed by a backward
substitution, both of which exhibit data dependences that limit
fine-grained parallelism. Thus, efficient wavefront parallelism is
critical for accelerating this stage.
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Figure 1: The effect of sparsification on reducing dependences
and wavefront in preconditioned sparse solvers. a) a sparse
lower triangular matrix L with 7 nonzeros stored in dense
format. b) compressed sparse row (CSR) presentations of L
shown in part 1a. ¢) dependence graph wavefront parallelism
for solving Lx = b, dashed lines represent barrier synchro-
nizations. d) dependence graph and wavefronts when nnz f
is sparsified.

Wavefront parallelization is a well known technique for exploit-
ing parallelism for loops with data dependences. In wavefront par-
allelization for sparse solvers, an inspector generates a graph of
sparse dependences at runtime and uses it to identify independent
iteration sets, i.e., wavefronts. Iterations within each wave can be
executed in parallel. The executor portion of the code executes
the waves sequentially due to the sparse dependences between
iterations in different wavefronts. Figure 1a and 1b show a dense
lower triangular factor and its corresponding compressed sparse
row format (CSR), respectively. The dependence DAG of sparse
lower triangular solver involving the sparse matrix in Figure 1b
is shown in Figure 1c. Each vertex i represents operations corre-
sponding to finding a solution of equation i (or x;). The dotted
lines in Figure 1c show three wavefronts of the the lower triangular
system. Elements a and b can be processed in the same wavefront
to compute xp and x; since columns 0 and 1 have no overlapping
row. However, processing elements c, d, e, f, g to compute x; and
x3 must wait until row 0 is completed. In Figure 1d, the nonzero
value f, corresponding to the edge between graph nodes 2 and 3,
was eliminated or sparsified, thereby reducing the wavefront levels
from three to two.

This example motivates the opportunity of selectively removing
nonzeros. Not only does it reduce the size of the sparse matrix and
associated computations, but it also has the potential to increase
wavefront parallelism when preconditioning is applied. The next
section describes the SPCG sparsification approach.
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3 SPARSIFIED PRECONDITIONED
CONJUGATE GRADIENT (SPCG) SOLVER

Sparsified Preconditioned Conjugate Gradient (SPCG) accelerates
the PCG solver by selectively zeroing out data in the sparse matrix,
i.e., sparsifying. This section first provides an overview of SPCG
and then introduces the wavefront-based sparsification and the
theory behind it. Additionally, we explain the two variants based
on ILU(0) and ILU(K), referred to as SPCG-ILU(0) and SPCG-ILU(K),
respectively.

14
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Figure 2: The SPCG solver overview

3.1 Overview

The overall view of SPCG is shown in Figure 2, where our proposed
sparsification approach is highlighted. As shown, the SPCG solver
takes a sparse SPD matrix A and a known right-hand side vector b
as its inputs and computes the solution vector x. The SPCG solver
first sparsifies A, then computes a preconditioner’s factors using
ILU(0)/ILU(K), followed by calling the PCG algorithm shown in
Algorithm 1. To increase parallelism, SPCG uses a wavefront-aware
sparsification approach to determine whether to eliminate nonzero
values. An ILU solver is applied to sparsified A to compute pre-
conditioner M, which has approximate L and U factors of A. The
preconditioner, along with A and b, are used in the PCG algorithm
to compute solution x. SPCG aims to use sparsification to run PCG
efficiently and converge quickly.

3.2 Wavefront-Aware Sparsification

SPCG employs a wavefront-aware sparsification approach to se-
lectively remove nonzero values from the original matrix in order
to improve PCG convergence time. This process adds controlled
perturbations to the matrix structure, with the goal of accelerating
convergence while preserving numerical stability. Specifically, it
seeks to balance two objectives: maintaining a bounded approxi-
mation error and reducing inter-iteration dependences of the pre-
conditioner by lowering the number of parallel wavefronts. The
following analysis focuses first on the convergence conditions un-
der the injected sparsification error, followed by a discussion of
algorithm and and the heuristics used for efficient implementation.

3.2.1 Theoretical Analysis. The goal of sparsification is to deter-
mine A in A = A + S where all three matrices are symmetric. We
aim to show when convergence is guaranteed in solving Ax = b
under the introduced sparsification S.

To get the iterations after sparsification, we start from:

Ax+Sx=b (2)
Treating x as the fixed point of an iterative scheme define:
Axk+1 +Sx;=b 3)

Subtracting Equation 2 from Equation 3, we obtain:

AQtar = %) +S(x =) =0 > Xy —x = A 'S(x = x)  (4)
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Figure 3: Example patterns of matrix A, residual matrix S, and
sparsified matrix A. Matrix Dubcoval with 134,569 nonzero
elements is sparsified with 10% and result in dropping 10.00%
of nonzeros and 14.73% of wavefronts.

After taking the norm of both sides:
s = xI1 < IATESI] - [l — x| ®)
Thus, if ||A~1S|| < 1, the system is guaranteed to converge after
applying sparsification. We simplify this condition by using the
matrix norm sub-multiplicative property, i.e., the norm of a product
is less than the product of norms:

ATES| < AT - 1IsI < 1, (6)
convergence is ensured if the product ||A~!]|| - [|S|| is less than 1.
Since [JA71]| - ||S|| sets a looser bound than ||A~1S||, even a value

larger than 1 may also reflect an acceptable convergence safety.
We remark that in the theoretical derivation above, the term S
implicitly includes not only the sparsification error but also the error
introduced by the incomplete factorization, denoted as Ey. However,
in practice, Ef is not available or easily computable. Therefore, in

our algorithm, we reinterpret the condition NA=Y] - 1SI] < 1 by
isolating S to represent only the sparsification error, excluding E,
and compare it against a relaxed empirical threshold 7 instead of 1.
This adjustment conceptually preserves the original convergence
bound while enabling a practical and efficient implementation.
Computing ||A~1|| after each sparsification step is computation-
ally expensive. The cost of computing wavefronts must also be
considered. To avoid this, we propose heuristics to approximately
ensure the above condition with low computational overhead.

3.2.2  Algorithm. The wavefront-aware sparsification procedure is
outlined in Algorithm 2, which takes as input the matrix A along
with two thresholds: 7 and w to ensure convergence rate based
on numerical properties and effective wavefront reduction. The
algorithm is an iterative method that in each iteration computes A;,
and then verifies that A, satisfies both the convergence condition
and the desired wavefront reduction. More specifically, convergence
safety is assessed using Equation 6. The algorithm however uses
certain approximation to achieve computational feasibility.

To avoid computing convergence and sparsity indicators on a
per-nonzero basis, we predefine a set of three sparsification ratios
t—10%, 5%, and 1%—each representing the percentage of nonzero
entries to be removed from A. These ratios are computed exper-
imentally and applied in decreasing order of aggressiveness as
shown in line 2 in Algorithm 2. We observed that extending beyond
these three sparsification ratios introduces diminishing returns.
For each ratio t, as shown in line 3, a corresponding proportion of
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Algorithm 2: Wavefront-Aware Sparsification

Input :Matrix A, convergence threshold 7, wavefront threshold w
Output: Matrix A
/* Estimate convergence sensitivity */

1 wy < number of wavefronts in A

2 foreach ¢ € {10, 5, 1} do

/* Check convergence indicator */

3 At — A-5;

4 A7« k(A /ALl
5 if [|A71]] - [IS¢]l > 7 then
6 if t = 1 then return A — Sy
7 else continue with next ¢
8 end
/* Check wavefront reduction */
9 wy, < number of wavefronts in A,
10 iflOO(wA—wAt)/wAt > w ort =1then
11 ‘ return At
12 end
13 end

14 return A — Sy

the smallest-absolute-magnitude nonzero entries is removed, while
diagonal entries are preserved to maintain numerical stability. As a
result, the original matrix A is decomposed into a sparsified matrix
Ay and a residual matrix S; containing the removed entries, such
that A = A; + S Figure 3 illustrates this sparsification and decom-
position on a matrix from the SuiteSparse repository [18], where
the effect is particularly visible in the lower triangular region.

For convergence testing, the algorithm uses an approximation
for | A=1|| in Equation 6. The approximation is based on the general
identity k(A) ~ ||A~Y|| - ||All2 where k(A) is the condition number
of A and expensive to compute. Thus, the condition number k(A)
is approximated as the ratio of the inf-norm of A, used as a proxy
for its largest eigenvalue, to the smallest diagonal entry in A, used
as an approximation for the smallest eigenvalue. This estimation
avoids expensive eigenvalue or inverse computations while still
providing a practical indicator of convergence behavior. As shown
in lines 3-8, for each sparsification ratio, the algorithm computes
this convergence indicator ||A~1|| - ||S|| and compares against the
predefined threshold 7. If this product exceeds 7, the algorithm
proceeds to evaluate a smaller, more conservative ratio. However, if
even the smallest ratio (1%) fails this convergence check, the most
aggressive ratio (10%) is selected as shown in line 6 in Algorithm 2.
Since no sparsification level guarantees reliable convergence, the al-
gorithm instead prioritizes higher sparsification, potentially higher
per-iteration speedup.

For sparsified matrices that satisfy the convergence test, the
algorithm proceeds to evaluate wavefront reduction effectiveness,
as shown in lines 9-12 of Algorithm 2. The number of wavefronts
in the sparsified matrix based on ¢, denoted by w 4, 1 computed
and normalized against the wavefronts in the original matrix w4
to measure the relative reduction as shown in Equation 7:
wa =Wy

Wavefront reduction (%) = X 100%. 7)

WA
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If the wavefront reduction exceeds the predefined threshold w,
the current sparsified matrix is considered effective, and the cor-
responding sparsified matrix A, is selected as shown in line 11 in
Algorithm 2. Otherwise, the algorithm proceeds to evaluate the
next value of t. If none of the tested sparsification ratios achieves
sufficient wavefront reduction despite satisfying the convergence
criterion, suggesting limited potential for per-iteration acceleration,
the algorithm selects the smallest ¢ (1%), to minimize sparsification
error, potentially reducing PCG iterations.

3.2.3 Heuristic choice analysis. The design of the wavefront-aware
sparsification algorithm (Algorithm 2) incorporates a set of experi-
mentally driven decisions to reduce computational overhead while
maintaining robustness. Two key simplifications, restricting the
sparsification ratio space and approximating condition number
estimation, are evaluated and justified below based on extensive
experiments on 107 SPD matrices from the SuiteSparse repository.

Algorithm 2 uses three empirically predetermined thresholds to
balance convergence and sparsification overhead. The used spar-
sification ratios to the most consistently effective choices: {1, 5,
10}. To show smaller or larger thresholds provide limited advan-
tage, we evaluated a broader range including 0.5, 15, 20, and 50.
Results show that 0.5 brings negligible structural change; 86.92%
cases have less than 5% relative wavefront reduction. Among them,
59.82% of matrices have no wavefronts reduced, limiting the benefit
only from reduced FLOPs and minor parallelism gains. Conversely,
while higher ratios such as 20 or 50 can yield stronger per-iteration
speedups, they often lead to more degraded convergence. Specif-
ically, 62.62% of matrices failed to converge or required at least
twice the number of iterations at a ratio of 50. Nonetheless, as Al-
gorithm 2 supports an extended set of candidate ratios, larger or
smaller ratios may still be appropriate in practice when numerical
or sparsity characteristics of matrices are known beforehand.

As discussed in Section 3.2.2, the algorithm uses an approxima-
tion of inverse norm and condition number to ensure convergence
safety condition in Equation 6. The key approximation is in com-
puting the condition number of A as the ratio of the inf-norm of A
to its smallest diagonal entry. This inexpensive approximation is
empirically working across the covered dataset. To validate this ap-
proximation, we computed the inverse norm with exact condition
numbers using the same grid-searched optimal threshold combi-
nation (t = 1, o = 10%). The approximated strategy achieved a
geometric mean speedup of 1.233 with a convergence rate of 52.34%,
while using the exact condition number gave 1.235 and 53.28%, re-
spectively. These close results confirm that the approximation is
accurate enough for guiding sparsification decisions.

3.3 SPCG-ILU(0) and -ILU(K)

The sparsified matrix A is then used to compute the preconditioner’s
factors as shown in Figure 2. In practice, a variety of preconditioning
techniques could be used to improve the convergence and computa-
tional efficiency of an iterative method like PCG. In this paper, we
focus on incomplete-LU(0) and ILU(K) preconditioning, resulting in
SPCG-ILU(0) and SPCG-ILU(K) variants, respectively. ILU(0) factor-
ization approximately decomposes a sparse matrix A into a lower
triangular matrix L and an upper triangular matrix U, such that
the non-zero sparsity structure of both triangular matrices matches
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that of A without introducing any additional non-zero elements
(fill-ins) during the factorization. This characteristic ensures that
memory usage and computational costs remain low.

ILU(K) provides a more accurate preconditioner by introducing
fill-ins during the computation of the factor. The resulting factor is
denser than the ILU(0) factors but is still considered sparse. K in
ILU(K) controls the number of fill-ins in the factor. As K increases,
the number of fill-ins also increases. However, more accurate ILU(K)
preconditioners require more memory, reaching a point where the
trade-off between cost and accuracy becomes unfavorable because
the runtime of the solver increases, even though the total number
of iterations decreases.

We implemented the two variants of SPCG: SPCG-ILU(0) and
SPCG-ILU(K). The SPCG-ILU(0) relies on existing Sparse ILU(0)
preconditioners, such as cuSPARSE ILU(0) [36]. However, since de-
pendence between iterations in ILU(K) changes during factorization,
direct implementation in CUDA is significantly more challenging.
Due to this technical difficulty and because the main focus of this
work is on improving the solve phase of PCG (i.e., Algorithm 1),
we use a CPU implementation of ILU(K) based on SuperLU [31] to
compute the factors.

The induced sparsification exhibits a different effect on sparsity
pattern of SPCG-ILU(0) and SPCG-ILU(K) variants. Since ILU(0)
does not change the sparsity pattern of the input matrix, sparsifica-
tion always reduces the number of nonzeros in the factor. Given the
more complex interplay between sparsification and fill-in in ILU(K),
the outcome is less predictable, as it remains unclear whether reduc-
ing non-zero elements will amplify, preserve, or diminish the gains
provided by fill-in. In SPCG-ILU(K), since the goal is to evaluate the
sparsification on the ILU(K) precondtioner, the value K is selected
to be the same for both SPCG and PCG. Deciding K is often based
on domain-specific information. To isolate the effect of K on spar-
sification and for fairness, we select the best converging K from 10,
20, 30, and 40 for a given matrix for the non-sparsified PCG-ILU(K).
We then use this value to measure the effect of sparsification.

4 PERFORMANCE RESULTS

This section compares the performance of SPCG and the (non-
sparsified) PCG and analyzes the effect of sparsification on SPCG’s
performance. Specifically, the following questions will be addressed:
(1) How much faster is SPCG compared to the PCG solver? (2) How
does sparsification affect the end-to-end performance of a linear
solver? (3) How do different components of SPCG contribute to its
performance? (4) How does SPCG perform across different GPU
and CPU architectures?

4.1 Setup

Matrix Dataset. We initially selected all SPD matrices from the
SuiteSparse matrix repository [18] with dimensions greater than
1000. Matrices that produced NaN residuals under any configuration
of fill factors during the iterative solving phase were excluded. This
left a final set of 107 matrices, each with a complete set of results
for both SPCG-ILU(0)/PCG-ILU(0) and SPCG-ILU(K)/PCG-ILU(K).

Architecture. Performance measurements are conducted on two
NVIDIA GPU architectures, A100 and V100 and an AMD EPYC
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Figure 4: SPCG-ILU(0) speedups on A100. The y-axis is limited
to the speedups ranging from 0 to 5.
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(b) The end-to-end speedups of SPCG-ILU(K).

Figure 5: SPCG-ILU(K) speedups on A100. The y-axis is lim-
ited to the speedups ranging from 0 to 5.
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7413 CPU architecture with 40 cores, operating at a base frequency
of 2.65 GHz and capable of boosting up to 3.6 GHz.

Methods. We use the sparse ILU(0) and sparse CG solver from
cuSPARSE as baselines in both SPCG-ILU(0) and SPCG-ILU(K). For
computing GFLOP/sec, we compute the theoretical FLOPs of the
non-sparsified baseline and reuse it for all methods. The reported
measurements for SPCG-ILU(0) and SPCG-ILU(K) are based on
the implemented heuristics that work by reducing the number of
wavefronts and considering the matrix properties. The convergence
threshold 7 of 1 and wavefront threshold w of 10% are selected based
on a grid search over a swept range. All methods are implemented
using single-precision.

4.2 Per-iteration Performance

Figure 4a shows the speedup distribution when the matrices are
applied with SPCG-ILU(0). SPCG-ILU(0) provides a geometric mean
speedup of 1.23X across all matrices in the dataset. Also, the SPCG-
ILU(0) provides speedup for 69.16% of the matrices compared to the
PCG-ILU(0). As shown, the SPCG-ILU(0) achieves speedup for the
majority of matrices included in the dataset, while most of them are
distributed within the range of 1 to 2. The range of GFLOP/sec for
the original PCG baseline in Figure 4 is between 0.0004-156.2739
GFLOP/sec for ILUO.

Figure 5a demonstrates a similar trend for SPCG-ILU(K), where
sparsification improves per-iteration performance for most ma-
trices. The range of GFLOP/sec for the original PCG baseline in
Figure 5 is between 0.0007-2.7090 GFLOP/sec for ILU(K). A no-
table point different from what was observed for SPCG-ILU(0) is
that even when applying SPCG-ILU(K) leads to a slowdown, the
slowdown still remains close to 1, suggesting a minor negative
effect of SPCG-ILU(K) as compared to SPCG-ILU(0). SPCG-ILU(K)
provides per-iteration speedup on 80.38% of matrices. The gmean
speedup of SPCG-ILU(K) is 1.65x which is higher than SPCG-ILU(0).
This can be attributed to the same reasoning as why sparsification
tends to improve performance more on denser matrices: in ILU(K),
more nonzeros are introduced during the factorization phase due
to fill-ins; thus, more dependences are incurred. Sparsifying the
matrix before ILU(K) factorization results in a sparser matrix input,
potentially leading to more efficient parallel computation.

4.3 End-to-End Performance

Figure 4b and Figure 5b present the end-to-end speedup distribu-
tion for the SPCG solver using ILU(0) and ILU(K) preconditioners,
respectively. In the end-to-end analysis, we focus exclusively on
converging matrices, as only these allow us to fully evaluate the
effectiveness of both the factorization and solving phases, ensuring
that the solution is reached within a predictable time. The residual
accuracy for the convergence of a linear system is selected to be
1x 1072 and the maximum iterations allowed is 1000 iterations.
For SPCG-ILU(0), the end-to-end experiments demonstrate that
sparsification provides a gmean speedup of 1.68X%, ranging between
0.69-9.61x across converging matrices. This reflects the ability of
the sparsification that does not affect or has a minimal effect on the
convergence of the linear systems. Particularly, in 94.65% of the lin-
ear systems, the number of iterations stays approximately the same
as the non-sparsified PCG. Given the higher per-iteration speedup
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of SPCG, an end-to-end speedup is achieved. A stronger trend is
also observed in SPCG-ILU(K), where it provides a gmean end-to-
end speedup of 3.73X over the non-sparsified PCG. The number
of iterations stays approximately the same in 91.61% of matrices.
Overall, it is shown the wavefront-aware sparsification algorithm
demonstrates its effectiveness with both ILU(0) and ILU(K).

4.4 Ablation Study

This section discusses the effect of sparsification on the performance
of preconditioning construction and solving phases as well as shows
the efficiency of the wavefront-aware sparsification algorithm. In
this section, we define the “Oracle” version as the fastest implemen-
tation achieved by selecting among three sparsified thresholds: 1%,
5%, and 10%. We assume this “Oracle” version represents the upper
bound of sparsification performance for each matrix.

4.4.1 Sparsification effect on preconditioning and solve phases. To
better understand how sparsification contributes to the overall
process, we decouple the factorization phase and the PCG solving
phase from each other and analyze each phase separately.

Figure 6 illustrates the effect of sparsification on the ILU(0) fac-
torization phase for different sparsification levels: 1%, 5%, and 10%.
The plot shows that the factorization is improved for most matri-
ces across various sparsification levels, with higher levels slightly
tending to achieve a greater speedup. This is because the sparsi-
fication alters the matrix structure by removing elements before
factorization, which changes the paths through which dependences
propagate. This reduces the number of wavefronts and requires
fewer operations during factorization, optimizing both memory
access patterns and arithmetic intensity.
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Figure 6: Sparsified ILU(0) factorization speedup on A100.

For the impact on the PCG solving phase, Table 1a presents
the per-iteration speedup of SPCG-ILU(0) across different sparsi-
fication ratios for all matrices. The geometric mean speedup for
SPCG-ILU(0) shows consistent improvements, ranging from 0.98x
to 1.22X across the three sparsification ratios. Using wavefront-
aware sparsification in SPCG, the speedup reaches to 1.23x.

Similarly, as shown in Table 1b, SPCG-ILU(K) demonstrates no-
table improvements, with geometric mean speedups ranging from
1.47x to 1.65x for each individual ratio, confirming that sparsifica-
tion significantly enhances iteration efficiency. These results show
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Table 1: Per-iteration speedup of SPCG over PCG on A100.

(a) Per-iteration speedup statistics of SPCG-ILU(0).

| Statistic/Setting [ 1% | 5% | 10% | SPCG | Oracle

Geometric Mean | 0.98x 1.11x 1.22% 1.23% 1.39%
% Accelerated 56.14% | 71.93% | 68.42% | 69.16% | 78.07%

(b) Per-iteration speedup statistics of SPCG-ILU(K).

| Statistic/Setting | 1% 5% 10% [ SPCG [ Oracle
Geometric Mean | 1.47X | 1.62X | 1.65X | 1.65X 1.78X

% Accelerated 88.57% | 92.86% | 85.71% | 80.38% | 97.14%
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Figure 7: Per-iteration speedups of SPCG and the oracle im-
plementations of SPCG-ILU(K)

that while higher sparsification levels generally improve compu-
tational efficiency for both preconditioners, this is not always the
case. As observed in both tables, while applying a sparsification
ratio of 10% yields a higher geometric mean speedup, a larger per-
centage of matrices achieve speedup with a sparsification ratio of
5%. This phenomenon can be attributed to the excessive wavefronts
potentially introduced by over-aggressive sparsification, which neg-
atively impacts performance. So even though for some matrices,
10% sparsification can achieve a higher speedup, a wider range of
matrices benefit from a more moderate sparsification like 5%. This
experiment highlights that sparsification effectively accelerates the
iterative solver in both preconditioner and solve phases.

4.4.2  The effect of wavefront-aware sparsification. Additionally, as
shown in Table 1, the oracle version achieves higher geometric
mean speedups of 1.39% and 1.78x, highlighting the upper-bound
potential of sparsification for accelerating the PCG process when
the most suitable sparsification is applied.

Lastly, the overlapping of data points from SPCG and oracle vari-
ants illustrated in Figure 7 shows the effectiveness of the wavefront-
aware sparsification algorithm. Specifically, for per-iteration perfor-
mance and end-to-end performance respectively, 56.14% and 31.43%
of the sparsified matrix selections match the oracle choices.

By comparing the data points from group of the SPCG variant in
Figure 7 and formerly shown Figure 5b, we observe a slight upward
shift of the data point distribution. This suggests that the end-to-
end performance gains are not only from the PCG performance
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boost, but also from the speedups from the factorization phase as
previously illustrated in Figure 6.

4.5 Portability

This section presents a cross-architecture consistency demonstra-
tion and analysis, highlighting the portability and performance of
SPCG by applying SPCG-ILU(0) on a V100 GPU and EPYC CPU.

Table 2: Per-iteration speedup on A100 and V100 for SPCG-
ILU(0) and SPCG-ILU(K).

SPCG-ILU(0) SPCG-ILU(K)
A100 [ V100 [ A100 | V100
Geometric Mean | 1.23X 1.22% 1.65% 1.71x
% Accelerated 69.16% | 83.18% | 80.38% | 82.25%

Statistic/Setting

To confirm the cross-architecture consistency by comparing
the speedup effects of SPCG-ILU(0) on A100 and V100 GPUs, we
conducted the same PCG tasks on both architectures across the
same set of matrices. As shown in Table 2, the measured speedups
for SPCG-ILU(0) are 1.23x on A100 and 1.22X on V100, while SPCG-
ILU(K) yields 1.65X on A100 and 1.71X on V100, demonstrating that
both GPUs consistently benefit from sparsification.

It is important to clarify that a higher speedup on one device
compared to another does not necessarily indicate which GPU is
faster overall, because speedup is a relative term between the spar-
sified version and the baseline, instead of an absolute timing metric.
It reflects each device’s ability to leverage improved parallelism
in SPCG. One primary reason for the observed speedups is that
reduced wavefronts enable higher parallel execution. Consequently,
variations in speedup magnitude arise from device-specific factors,
including architectural differences in memory bandwidth, parallel
execution units, and thread-block organization, which can either
amplify or mitigate the performance impact of reduced wavefronts.

Specifically, the number of wavefronts in SPCG-ILU(0) consis-
tently decreases and memory constraints are minimal due to zero
fill-ins. As a result, GPUs with a higher number of cores, such as the
A100, achieve slightly better geometric mean speedups compared
to the V100. This improvement is attributed to the A100’s abundant
resources, which enhances its ability to exploit the reduced wave-
fronts effectively. Conversely, in SPCG-ILU(K) scenarios, fill-ins
introduce variability and memory can become a bottleneck. In these
cases, the V100, despite having smaller shared memory resources
than the A100, benefits more significantly from SPCG’s reduction
of the solver’s memory footprint. This reduction alleviates memory
bottlenecks more effectively on the V100, resulting in comparatively
larger performance gains than those observed on the A100.

Examining the speedup distributions illustrated in Figure 8a-
8b, the histograms reveal that most speedup values exceed 1. This
indicates that, under the V100 scenario, the majority of matrices
experience moderate and stable performance improvements. Addi-
tionally, any performance degradations observed in some matrices
remain negligible. These findings are consistent with the speedup
effects observed on the A100 architecture, as shown in Figure 4a and
Figure 5a, further demonstrating cross-architecture consistency.



Conference’17, July 2017, Washington, DC, USA

While the focus of the work is on GPUs, we tested the solve
phase of SPCG-ILU(0) on an AMD EPYC CPU as shown in Fig-
ure 8c. SPCG improves the performance on CPU by a gmean per-
iteration speedup of 1.24%, with 91.59% of matrices benefiting from
the sparsification. This clearly shows the wavefront parallelism
improvement helps CPU architectures as well as GPUs.

4.6 Low-rank Approximation Methods

Low-rank approximation methods apply sparsification to the factors
of preconditioners or factorizations in linear solvers where local
low-rank structures exist. This technique is fundamentally different
from SPCG, which is applied to the input matrix regardless of
rank structures and is instead based on the magnitude of values.
Identifying low-rank structures, especially in incomplete solvers,
is challenging because their frontal or supernodal matrices—dense
sub-matrices that hold fill-ins in the factors—are small, thus offering
fewer opportunities for low-rank approximation.

We use STRUMPACK [22] to explore low-rank solvers and their
different parameters. Particularly, we focus on Hierarchically Semi-
Separable (HSS) low-rank matrices and their various compression
parameters, including compression leaf size, relative and absolute
compression tolerances, and minimum separator size. However,
low-rank approximations were rarely triggered for incomplete
solvers. Despite experimenting with sweeping leaf size and com-
pression tolerances, we observed that HSS compression was only
effectively applied in 5.61% of the tested matrices. Reducing the
minimum separator size noticeably increased HSS usage, raising the
coverage to 28.04%. However, this setting negatively impacted both
performance and memory usage and is therefore not recommended.

Therefore, our analysis suggests that the majority ILU(0) or
ILU(K) factors are not qualified to trigger HSS compression from
STRUMPACK. Even when direct solver, i.e., LU factorization is used
as preconditioner, low-rank approximation does not improve the
performance. Due to this methodological mismatch, comparing
SPCG directly with STRUMPACK becomes less insightful.

5 ANALYSIS

This sections illustrates a series of analyses on application, matrix,
and architecture characteristics to gain a better understanding of
when and why sparsification is beneficial.

5.1 Impact of Application Characteristics

Based on experiment results, we observe that the application cate-
gory is a useful indicator for deciding whether to apply sparsifica-
tion, as matrices from the same categories often share properties
determined by the nature of the problem.

Figure 9 presents bar charts showing the geometric mean end-
to-end speedups across 17 application categories. Generally, 16 of
these categories show either moderate or strong improvements on
end-to-end performance, demonstrating a constant boost brought
by SPCG. To understand where the end-to-end performance gains
originate and where they deteriorate, we further analyze these
results by considering per-iteration speedups.

Among the categories that exhibit good end-to-end speedups,
several stand out for their consistent gains. In particular, economic,
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duplicate optimization, and circuit simulation show strong improve-
ments in overall runtime. These categories also report excellent
per-iteration speedups, suggesting that sparsification effectively re-
duces wavefront depth and enables better parallelism in triangular
solves within each CG iteration. The preconditioners generated in
these cases not only support faster iteration steps but also preserve
convergence behavior, resulting in compounded and cumulated
benefits across the full solve process.

On the other hand, categories such as computational fluid dy-
namics and computer graphics/vision problems show relatively mod-
erate end-to-end improvements, despite achieving substantial per-
iteration speedups. This mismatch suggests that although the cost
of each iteration is reduced, the number of iterations required in-
creases. In these cases, the original acceleration advantage is diluted
by degraded convergence, leading to only partial gains overall.

5.2 Wavefront Analysis

We now consider the effect of sparsification on number of wave-
fronts. Figure 10a displays the results of analyzing whether wave-
front reduction and per-iteration speedup are correlated for SPCG-
ILU(0). The wavefront reduction ratio defined in Equation 7 is
utilized to evaluate the correlation. A trendline is computed using
linear regression to illustrate how wavefront reduction impacts per-
iteration speedup. It visually demonstrates a positive correlation
between wavefront reduction and per-iteration speedup. A Spear-
man’s correlation coefficient of 0.61 also reflects this moderately
strong correlation. The correlation highlights that reducing the
wavefront through sparsification leads to significant improvements
in parallelism during the PCG solving phase, which is the primary
reason sparsification enhances per-iteration solving performance.

The strength of this correlation arises from the fundamental
impact of the number of wavefronts on parallel performance of pre-
conditioners and triangular solvers. Reducing dependences results
in fewer wavefronts, leading to faster computations. By reducing
the number of wavefronts, parallelism is improved by reduced syn-
chronization and increased parallelism within each wavefront. Al-
though the exact degree of speedup varies depending on the matrix
and sparsification level, the clear relationship between wavefront
reduction and speedup is consistent across the dataset.

Similarly, Figure 10b shows a correlation between wavefront re-
duction and per-iteration speedup for ILU(K). As the wavefront re-
duction ratio increases, the per-iteration speedup tends to increase,
confirming the link between these two metrics in this scenario, too.
For SPCG-ILU(K), sparsification achieves more efficient memory
access patterns and computational reductions also by reducing the
number of wavefront elements processed during each iteration.
However, due to the interplay between sparsification and fill-ins
introduced by ILU(K), the effect of sparsification on wavefront re-
duction is more complex and thereby less strong than in ILU(0),
achieving a Spearman’s correlation coefficient of 0.22, indicating a
positive but weaker correlation.

5.3 GPU Profiling Observations

To gain deeper insights into the performance implications of spar-
sification on GPU hardware, we employed NVIDIA Nsight Com-
pute to profile matrices. We discuss three representative matrices:
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thermomech_dM, 2cubes_sphere, and Muu. These matrices, each
serving as a representative example of a broader category, exhibit
varying levels of speedup due to sparsification.

5.3.1 Memory-Bandwidth Utilization: Sparsification helps reduce
global memory usage, resulting in improved DRAM throughput.
This reduction in memory bandwidth bottlenecks contributes di-
rectly to the observed speedups, as the GPU cores spend less time
waiting for memory operations to complete. For example, DRAM
utilization decreased from 1.71% to 1.07% for Muu, contributing to

its modest speedup of 0.99x. Conversely, thermomech_dM demon-
strated an increase in DRAM utilization from 4.24% to 6.25%, corre-
lating with its speedup of 4.39%.

5.3.2  Shift Towards Compute-Bound Behavior: For matrices where
sparsification leads to performance improvements, we observed a
transition from memory-bound to compute-bound behavior. This
shift occurs because the reduced memory footprint allows the
GPU to better utilize its arithmetic and logic units, thereby en-
hancing overall computational efficiency. A notable example is
thermomech_dM, where compute utilization increased from 16.49%
to 23.71%, reflecting better use of compute resources. In contrast,
2cubes_sphere exhibited constant compute utilization of 1.07% be-
fore and after sparsification, indicating its performance is more
reliant on memory latency than compute efficiency. These find-
ings highlight the impact of sparsification: reducing global memory
pressure and improving compute-resource utilization. However, the
degree of benefit varies based on matrix characteristics, underscor-
ing the importance of careful parameter tuning for sparsification.

5.4 Condition Number Analysis

The condition number of a matrix provides a key measure of its
numerical stability and sensitivity, particularly in the context of
iterative solvers like SPCG. For a linear system Ax = b, it quantifies
how errors in the input vector b can amplify in the solution x.
Specifically, the condition number is the maximum ratio of the
relative error in x to the relative error in b. A high condition number
implies that small inaccuracies in b may cause significant errors
in x, while a low condition number indicates that the solution x
will remain relatively stable. The condition number is an intrinsic
property of the matrix, independent of the machine’s floating-point
precision or the algorithm used to solve the system [8]. This makes
it a critical factor in understanding how sparsification influences
convergence behavior in PCG solvers.

From the analysis in previous sections, sparsification has demon-
strated the potential to improve PCG solvers by reducing time
per-iteration through decreased wavefronts. Beyond this computa-
tional benefit, we found that 24 matrices in our dataset exhibited
cases where sparsification enhanced convergence. To explore the
underlying reasons, we examined the condition numbers of these
matrices and their sparsified variations at ratios of 1%, 5%, and 10%.
Representative examples include the matrices ecology2, thermall,
and Pres_Poisson, each illustrating a distinct pattern of behavior.
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The system ecology?2 fails to converge in 1000 iterations without
sparsification or at 1%, with final residuals above 1. At 5% and 10%,
however, it converges in 2 iterations, reaching residuals as low as
1.2 X 10713, This dramatic improvement aligns with a condition
number drop from 30 to 10, confirming the enhanced convergence.

In thermall, the effect of sparsification is gradual but consistent.
As the sparsification ratio increases, iteration counts drop steadily
from over 1000 to 531, then 127, and finally 71 at 10%. The condi-
tion number also declines from 10.71 to 10.70 and then to 10.61,
indicating improved conditioning and accelerated convergence.

Pres_Poisson shows diminishing returns at higher sparsifica-
tion levels. Convergence improves up to 5%, with iterations drop-
ping from 458 to 401 and the condition number from 1.11 X 10* to
1.07x10* However, at 10%, the system fails to converge within 1000
iterations, and the condition number returns to 1.11 x 104, This sug-
gests that excessive sparsification can remove structurally critical
entries, degrading conditioning and weakening the preconditioner.

In conclusion, appropriate sparsification can enhance conver-
gence and computational efficiency, as confirmed by corresponding
improvements in condition numbers. However, excessive sparsifica-
tion may lead to a deterioration in both convergence and stability.

6 RELATED WORK

Iterative solvers such as PCG are known to be important compo-
nents in several scientific simulations and are used as a way to mea-
sure the efficiency of systems for scientific applications. Dongarra et
al. [19] proposed and developed the High-Performance Conjugate
Gradient benchmark (HPCG) to assess high-performance comput-
ing systems. HPCG focuses on common data access patterns in
various scientific applications. We discuss two major categories of
accelerating PCG: wavefront parallelism and approximation.

6.1 Wavefront Techniques to Accelerate PCG

Using wavefront techniques to improve the performance of loop-
carried sparse dependence, such as those in sparse triangular solvers
and sparse incomplete LU factorization, is a common approach
because these techniques do not affect accuracy. Several DAG
scheduling techniques have been proposed to leverage wavefront
parallelism on CPU architectures. Wavefront parallelism meth-
ods [2, 3, 12-15, 37, 44] first create a dependency DAG, and then
compute a list of wavefronts to benefit from partial parallelism.
While wavefront parallelism ensures thread-level parallelism,
warp-level parallelism is also essential for GPUs where abundant
parallel resources exist. A wide range of scheduling techniques ap-
plied to sparse triangular solvers [34, 36, 41] or incomplete LU fac-
torization [5, 11] to leverage both thread-level and warp-level par-
allelism on GPUs. cuSPARSE [36] is the state-of-the-art NVIDIA li-
brary. CapelliniSpTRSV [41] and synchronization-free SpTRSV [34]
use atomic operations and busy-waiting to mitigate the impact of
barrier synchronization in wavefront parallelism. ILU precondi-
tioners also benefit from warp-level parallelism and address the
dynamic nature of ILU using multiple fixed-point iterations [5] or
block structures [11]. However, the dependences between iterations
remain the main obstacle to fully utilizing parallel resources, wast-
ing GPU time. Sparsification can reduce the number of wavefronts
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and synchronizations. SPCG leverages existing implementations
and improves their performance on GPUs and CPUs.

6.2 Approximation in Linear Solvers

Matrix factorization methods, such as Gaussian elimination, offer
a general and direct way to solve linear systems. Several direct
solvers have been developed [17, 35] but their scalability is limited
by memory and computation requirements of fill-ins in their fac-
tors. Therefore, approximation techniques are used to compute an
estimates of the factors with reduced memory and computational
requirements. These approximate factors are then used with precon-
ditioned iterative solvers, such as PCG. We classify approximation
methods for linear solvers into three categories: mixed-precision
methods [1, 24], factorized sparse approximate inverse (FSAI) meth-
ods [4, 9], and sparsification methods [22, 28, 30].

Mixed-precision approaches [1, 21, 23-25, 27, 32, 42, 45] use low-
precision data types, such as float16, to reduce the size of the
factors. Mixed-precision linear solvers are especially important for
GPUs, where low-precision data types are commonly supported
and lead to less expensive computations. Mixed-precision direct
linear solvers are often used in preconditioned iterative solvers [24].
The SPCG solver proposed in this work can additionally benefit
from mixed-precision design.

The sparse approximate inverse (SAI) [9, 16] is another approxi-
mation method for solving linear systems through preconditioning.
The SAI preconditioner is based on assumption that a sparse ap-
proximate inverse of a given sparse matrix exists. The assumption
of sparsity in the approximate inverse is because the magnitude of
values in the actual inverse is often small. Therefore, the inverse
is approximately computed for a given sparsity pattern. The spar-
sity pattern can be determined statically [4] or dynamically [9].
Recent SAI techniques [29] also specify sparsity patterns that are
computable with GPU architectures and their tensor cores. SAI
techniques rely on matrix multiplication to apply the approximate
inverse, enabling efficient use of GPU resources. While SAI tech-
niques are efficient, not all matrices have a sparse approximate
inverse, limiting the generality of these techniques.

Sparsification is a common approach for approximating linear
system solvers and creating preconditioners to maintain general-
ity and efficiency. Application-specific sparsification, particularly
for Laplacian diagonally dominant matrices [28, 30, 38], has re-
ceived considerable attention. These methods sparsify fill-in based
on application properties. While efficient, these algorithms are
specific to a particular class of applications. Rank information is
commonly used to reduce computation. Many sparse matrices are
full-rank but contain several zero blocks. During factorization, these
blocks can be filled with nonzero elements exhibiting low-rank prop-
erties in some parts, allowing for the removal of some elements
from the factor. Hierarchical low-rank approximation methods (H-
Matrices) [7, 33, 43] can extract local low-rank properties in certain
regions of the frontal matrices. H-matrices are used in sparse linear
solvers by applying it to tiles [10] or frontal matrices [22, 39] during
factorization. STRUMPACK [22] leverages this concept, using vari-
ous H-matrix and compression algorithms to sparsify the factors.
To be efficient, these methods require large frontal matrices, which
occur in direct factorization.
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The most commonly used sparsification method in solving lin-
ear systems is incomplete solvers, where the number of fill-ins
is pre-determined to control memory usage. Some examples are
ILU(K), and Incomplete Cholesky with K fill-in (IC(K)) solvers,
which are commonly used as preconditioners in iterative solvers
such as PCG [20]. This category is general and relies on reducing
the number of fill-ins based on the value of K during factoriza-
tion. Several efficient incomplete solvers [36] are implemented for
GPUs. This sparsification methodology is the closest to our own.
The problem with sparsification in these incomplete solvers is that
they still retain many fill-ins that are not essential [39]. Even when
the dropping threshold is changed, most fill-ins remain in the fac-
tors. While low-rank approximation in STRUMPACK [22] and other
methods [39] are also applied to incomplete solvers, GPU versions
of these incomplete solvers are not supported; only a direct solver
is implemented on GPUs. Also, low-rank methods work efficiently
when the number of fill-ins is high, which is often not the case for
incomplete solvers with zero or a small number of fill-ins.

7 SUMMARY AND CONCLUSION

This paper has described SPCG, which uses wavefront-aware spar-
sification to optimize incomplete LU preconditioners ILU(0) and
ILU(K) on SPD matrices. SPCG improves the performance of the
PCG solver with minimal effect on convergence. As a result, two
variants of SPCG-ILU(0) and SPCG-ILU(K) are introduced, where
the difference comes from the type of preconditioner. SPCG im-
proves the efficient use of parallel resources by exposing more
parallelism and reducing the cost of data movement. SPCG is thor-
oughly benchmarked across a wide range of SPD matrices. The
sparsification in SPCG-ILU(0) and SPCG-ILU(K) leads to a geomet-
ric mean (gmean) speedup of 1.23X and 1.65X on an A100 GPU,
respectively. SPCG also improves the end-to-end performance of
linear solvers by a gmean of 1.68x and 3.73X on an A100 GPU for
SPCG-ILU(0) and SPCG-ILU(K), respectively. SPCG demonstrates
a similar speedup trend on a V100 GPU and an AMD EPYC CPU.
Additional analysis was also conducted, showing the effect of the
application and wavefronts on SPCG’s performance.

ACKNOWLEDGMENTS

This work is supported by NSERC discovery grants (RGPIN-2023-
04897, DGECR-2023-00133), NSERC alliance grant (ALLRP 586319-
23), Chameleon cloud [26], and the Digital Research Alliance of
Canada (www.alliancecan.ca).

REFERENCES

[1] Khalid Ahmad. 2024. Data-driven Techniques to Accelerate Sparse Computations
on Graphical Processing Units (GPUs). The University of Utah.

[2] Jayvant Anantpur and R Govindarajan. 2013. Runtime dependence computation
and execution of loops on heterogeneous systems. In Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
IEEE, 1-10.

[3] Edward Anderson and Youcef Saad. 1989. Solving sparse triangular linear systems
on parallel computers. International Journal of High Speed Computing 1, 01 (1989),
73-95.

[4] Hartwig Anzt, Edmond Chow, Thomas Huckle, and Jack Dongarra. 2016. Batched
generation of incomplete sparse approximate inverses on GPUs. In 2016 7th
Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems
(ScalA). IEEE, 49-56.

[5] Hartwig Anzt, Tobias Ribizel, Goran Flegar, Edmond Chow, and Jack Dongarra.
2019. ParILUT-a parallel threshold ILU for GPUs. In 2019 IEEE International

[6]

[11

[12

(13

[14

[15

[16

[17

jpory
&

(19]

[20

[21

[22

~
=

[24

[25

I
o

[27

[28

Conference’17, July 2017, Washington, DC, USA

Parallel and Distributed Processing Symposium (IPDPS). IEEE, 231-241.

Richard Barrett, Michael Berry, Tony F Chan, James Demmel, June Donato,
Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk Van der
Vorst. 1994. Templates for the solution of linear systems: building blocks for iterative
methods. SIAM.

Mario Bebendorf. 2008. Hierarchical matrices. Springer.

David A Belsley, Edwin Kuh, and Roy E Welsch. 2005. Regression diagnostics:
Identifying influential data and sources of collinearity. John Wiley & Sons.
Massimo Bernaschi, Mauro Carrozzo, Andrea Franceschini, and Carlo Janna.
2019. A dynamic pattern factored sparse approximate inverse preconditioner
on graphics processing units. SIAM Journal on Scientific Computing 41, 3 (2019),
C139-C160.

Wajih Boukaram, Stefano Zampini, George Turkiyyah, and David E Keyes. 2024.
Cholesky Factorization of Tile Low Rank Matrices on GPUs. (2024).

Yan Chen, Xuhong Tian, Hui Liu, Zhangxin Chen, Bo Yang, Wenyuan Liao, Peng
Zhang, Ruijian He, and Min Yang. 2018. Parallel ILU preconditioners in GPU
computation. Soft Computing 22 (2018), 8187-8205.

Kazem Cheshmi. 2022. Transforming Sparse Matrix Computations. Ph. D. Disser-
tation. University of Toronto (Canada).

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi.
2017. Sympiler: transforming sparse matrix codes by decoupling symbolic analy-
sis. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1-13.

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi.
2018. ParSy: inspection and transformation of sparse matrix computations for
parallelism. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 779-793.

Kazem Cheshmi, Michelle Strout, and Maryam Mehri Dehnavi. 2023. Run-
time Composition of Iterations for Fusing Loop-carried Sparse Dependence.
In Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (Denver, CO, USA) (SC ’23). Associa-
tion for Computing Machinery, New York, NY, USA, Article 89, 15 pages.
https://doi.org/10.1145/3581784.3607097

Edmond Chow. 2001. Parallel implementation and practical use of sparse approx-
imate inverse preconditioners with a priori sparsity patterns. The International
Journal of High Performance Computing Applications 15, 1 (2001), 56-74.
Timothy A Davis. 2008. User Guide for CHOLMOD: a sparse Cholesky factoriza-
tion and modification package. Department of Computer and Information Science
and Engineering, University of Florida, Gainesville, FL, USA (2008).

Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),
1-25.

Jack Dongarra, Michael A Heroux, and Piotr Luszczek. 2016. High-performance
conjugate-gradient benchmark: A new metric for ranking high-performance
computing systems. The International Journal of High Performance Computing
Applications 30, 1 (2016), 3-10.

Sergiy Yu Fialko and Filip Zeglen. 2016. Preconditioned conjugate gradient
method for solution of large finite element problems on CPU and GPU. journal
of Telecommunications and Information Technology 2 (2016), 26-33.

Goran Flegar, Hartwig Anzt, Terry Cojean, and Enrique S Quintana-Orti. 2021.
Adaptive precision block-Jacobi for high performance preconditioning in the
Ginkgo linear algebra software. ACM Transactions on Mathematical Software
(TOMS) 47, 2 (2021), 1-28.

Pieter Ghysels and Ryan Synk. 2022. High performance sparse multifrontal
solvers on modern GPUs. Parallel Comput. 110 (2022), 102897.

Fritz Gobel, Thomas Griitzmacher, Tobias Ribizel, and Hartwig Anzt. 2021. Mixed
precision incomplete and factorized sparse approximate inverse preconditioning
on GPUs. In Euro-Par 2021: Parallel Processing: 27th International Conference
on Parallel and Distributed Computing, Lisbon, Portugal, September 1-3, 2021,
Proceedings 27. Springer, 550-564.

Nicholas J Higham and Theo Mary. 2022. Mixed precision algorithms in numerical
linear algebra. Acta Numerica 31 (2022), 347-414.

Takuya Ina, Yasuhiro Idomura, Toshiyuki Imamura, Susumu Yamashita, and
Naoyuki Onodera. 2021. Iterative methods with mixed-precision preconditioning
for ill-conditioned linear systems in multiphase CFD simulations. In 2021 12th
Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems
(ScalA). IEEE, 1-8.

Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,
Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,
Alexander Barnes, Frangois Halbach, Alex Rocha, and Joe Stubbs. 2020. Lessons
Learned from the Chameleon Testbed. In Proceedings of the 2020 USENIX Annual
Technical Conference (USENLX ATC °20). USENIX Association.

Daniel Kressner, Yuxin Ma, and Meiyue Shao. 2023. A mixed precision LOBPCG
algorithm. Numerical Algorithms 94, 4 (2023), 1653-1671.

Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A Spiel-
man. 2016. Sparsified cholesky and multigrid solvers for connection laplacians. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing.
842-850.


https://doi.org/10.1145/3581784.3607097

Conference’17, July 2017, Washington, DC, USA

[29]

[30]

[31]

[32

w
&

[34

[35]

[36]

Sergi Laut, Ricard Borrell, and Marc Casas. 2024. Extending Sparse Patterns
to Improve Inverse Preconditioning on GPU Architectures. In Proceedings of
the 33rd International Symposium on High-Performance Parallel and Distributed
Computing. 200-213.

Yin Tat Lee, Richard Peng, and Daniel A Spielman. 2015. Sparsified cholesky
solvers for SDD linear systems. arXiv preprint arXiv:1506.08204 (2015).

Xiaoye S Li. 2005. An overview of SuperLU: Algorithms, implementation, and
user interface. ACM Transactions on Mathematical Software (TOMS) 31, 3 (2005),
302-325.

Neil Lindquist, Piotr Luszczek, and Jack Dongarra. 2021. Accelerating restarted
GMRES with mixed precision arithmetic. IEEE Transactions on Parallel and
Distributed Systems 33, 4 (2021), 1027-1037.

Bangtian Liu, Kazem Cheshmi, Saeed Soori, Michelle Mills Strout, and
Maryam Mehri Dehnavi. 2020. MatRox: modular approach for improving data
locality in hierarchical (Mat)rix App(Rox)imation. In Proceedings of the 25th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (San
Diego, California) (PPoPP ’20). Association for Computing Machinery, New York,
NY, USA, 389-402. https://doi.org/10.1145/3332466.3374548

Weifeng Liu, Ang Li, Jonathan Hogg, Iain S Duff, and Brian Vinter. 2016. A
synchronization-free algorithm for parallel sparse triangular solves. In Euro-Par
2016: Parallel Processing: 22nd International Conference on Parallel and Distributed
Computing, Grenoble, France, August 24-26, 2016, Proceedings 22. Springer, 617
630.

Zhengyang Lu, Yuyao Niu, and Weifeng Liu. 2020. Efficient block algorithms for
parallel sparse triangular solve. In Proceedings of the 49th International Conference
on Parallel Processing. 1-11.

Maxim Naumov. 2011. Parallel solution of sparse triangular linear systems in the
preconditioned iterative methods on the GPU. NVIDIA Corp., Westford, MA, USA,
Tech. Rep. NVR-20111 (2011).

[37] Jongsoo Park, Mikhail Smelyanskiy, Narayanan Sundaram, and Pradeep Dubey.

2014. Sparsifying synchronization for high-performance shared-memory sparse

[38

[39

[40

[41

[42

[43

[44

]

]

]
]

]

Da Ma, Khalid Ahmad, Kazem Cheshmi, Hari Sundar, and Mary Hall

triangular solver. In Supercomputing: 29th International Conference, ISC 2014,
Leipzig, Germany, June 22-26, 2014. Proceedings 29. Springer, 124-140.

Richard Peng and Daniel A Spielman. 2014. An efficient parallel solver for SDD
linear systems. In Proceedings of the forty-sixth annual ACM symposium on Theory
of computing. 333-342.

Hadi Pouransari, Pieter Coulier, and Eric Darve. 2017. Fast hierarchical solvers
for sparse matrices using extended sparsification and low-rank approximation.
SIAM Journal on Scientific Computing 39, 3 (2017), A797-A830.

Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM.

Jiya Su, Feng Zhang, Weifeng Liu, Bingsheng He, Ruofan Wu, Xiaoyong Du, and
Rujia Wang. 2020. CapelliniSpTRSV: a thread-level synchronization-free sparse
triangular solve on GPUs. In Proceedings of the 49th International Conference on
Parallel Processing. 1-11.

Zhen Xiao, Tong-Xiang Gu, Yuan-Xi Peng, Xiao-Guang Ren, and Jin Qi. 2018.
Mixed precision in CUDA polynomial precondition for iterative solver. In 2018
IEEE International Conference on Computer and Communication Engineering Tech-
nology (CCET). IEEE, 186-192.

Chenhan D Yu, James Levitt, Severin Reiz, and George Biros. 2017. Geometry-
oblivious FMM for compressing dense SPD matrices. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. 1-14.

Behrooz Zarebavani, Kazem Cheshmi, Bangtian Liu, Michelle Mills Strout, and
Maryam Mehri Dehnavi. 2022. HDagg: Hybrid Aggregation of Loop-carried
Dependence Iterations in Sparse Matrix Computations. In 2022 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 1217-1227. https://doi.
org/10.1109/IPDPS53621.2022.00121

Haoyuan Zhang, Wenpeng Ma, Wu Yuan, Jian Zhang, and Zhonghua Lu. 2024.
Mixed-precision block incomplete sparse approximate preconditioner on Tensor
core. CCF Transactions on High Performance Computing 6, 1 (2024), 54-67.


https://doi.org/10.1145/3332466.3374548
https://doi.org/10.1109/IPDPS53621.2022.00121
https://doi.org/10.1109/IPDPS53621.2022.00121

	Abstract
	1 Introduction
	2 Motivation
	3 Sparsified Preconditioned Conjugate Gradient (SPCG) Solver
	3.1 Overview
	3.2 Wavefront-Aware Sparsification
	3.3 SPCG-ILU(0) and -ILU(K)

	4 Performance Results
	4.1 Setup
	4.2 Per-iteration Performance
	4.3 End-to-End Performance
	4.4 Ablation Study
	4.5 Portability
	4.6 Low-rank Approximation Methods

	5 Analysis
	5.1 Impact of Application Characteristics
	5.2 Wavefront Analysis
	5.3 GPU Profiling Observations
	5.4 Condition Number Analysis

	6 Related work
	6.1 Wavefront Techniques to Accelerate PCG
	6.2 Approximation in Linear Solvers

	7 Summary and Conclusion
	Acknowledgments
	References

