
Transforming Sparse Matrix Computations

by

Kazem Cheshmi

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Department of Computer Science
University of Toronto

© Copyright 2022 by Kazem Cheshmi

Transforming Sparse Matrix Computations

Kazem Cheshmi
Doctor of Philosophy

Department of Computer Science
University of Toronto

2022

Abstract

Sparse matrix computations are at the heart of many scientific applications and

data analytics codes. The performance and memory usage of these codes depend

heavily on their use of specialized sparse matrix data structures that only store the

nonzero entries. However, such compaction is done using index arrays that result in

indirect array accesses such as A[B[i]] where A and B are both arrays. Numerical

libraries can provide high-performance code for an individual sparse kernel however

they must be manually tuned and optimized for different inputs and architectures.

Alternatively, compilers are used to optimize codes that provide architecture porta-

bility. Due to these indirect array accesses, memory access information is unknown

at compile-time, and thus it is challenging to vectorize a sparse matrix method or run

it in parallel cores.

To automate the generation of code for efficient execution of sparse code, several

compile-time and runtime techniques are required. Existing techniques are either

not efficient or need manual effort to extend to different sparse matrix computations.

Consequently, in this dissertation, I address the problem of automating the optimiza-

tion of sparse matrix code on parallel processors with a specific focus on sparse linear

solvers and numerical optimizations.

This dissertation presents a set of code transformations and algorithms, all im-

plemented in a novel code generator called Sympiler, that automates the optimiza-

tion of sparse matrix codes on parallel processors. Sympiler takes a sparse method,

arising from a sparse linear system or sparse numerical optimization, and decouples

ii

information related to the computation pattern of the method, i.e., symbolic infor-

mation, and uses this information to transform the code to vectorizable and parallel

code. Sympiler also enables the reuse of symbolic information when the computation

pattern remains static for a period of time in the simulations or for when it changes

modestly. Evaluation results show the automatically generated code by Sympiler pro-

vides between 1.2–3.1× speedup compared to highly optimized sparse linear solver

libraries. It also improves the performance of sparse numerical optimization such as

Quadratic Programming between 1.7–24.8× compared to highly efficient solvers.

iii

Acknowledgments

I would like to express my greatest gratitude to Maryam Mehri Dehnavi, my advi-
sor and my mentor. I adore all discussions and long arguments we had for polishing
the problems and the ideas throughout my PhD program. Maryam gave me the
opportunity to grow and also to build what I was dreaming for. I also thank my com-
mittee members Ken Jackson, Angela Demke Brown, and Christina C. Christara for
their feedback and insightful questions and also Christopher Batty for his very helpful
suggestions that contributed significantly to further improving the dissertation.

I would like to especially thank my collaborators and mentors, Michelle Mills
Strout, Shoaib Kamil, and Danny M. Kaufman who I learned a lot from. They have
helped in numerous aspects to polish and develop the ideas in this thesis. Without
Michelle and Shoaib, Sympiler would have not existed! Danny played a crucial role
in making Sympiler scalable and applying it to computer graphics, helping its impact
significantly.

I also want to thank my mentors from Rutgers and Concordia universities. Santosh
Nagarakatte and Saman A. Zonouz provided invaluable advice on how to navigate
my way around research and how to position myself for a future career in academia.
Maria A. Amer and Jelena Trajkovic also helped a lot in the early stages of my PhD
and so did my MSc advisors Siamak Mohammadi, Daniel Versick, and Djamshid
Tavangarian.

I would like to thank my co-workers at Paramathics, Zachery Cetinic, Bangtian
Liu, Saeed Soori, and Behrooz Zare for all the good memories. I especially thank
Zachery and Behrooz who help extend Sympiler to more applications. I thank my
friends who have patiently tolerated my very busy schedule and encouraged me along
the way. I especially thank Fattaneh Jafari who introduced me to Maryam where this
PhD began. It is so sad we lost such a beautiful soul recently. I wish her soul to rest
in peace.

Last but not the least, I am most grateful to my siblings, Mehdi, Hadi, Ali and
Leila and also my parents. Their support both mentally and academically, has helped
me during all difficult years of my studies. Without their support I would not be here!

iv

To My Parents:

Maryam Azarboo

&

Mohammad Cheshmi

v

Contents

Acknowledgements iv

Table of Contents vi

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Sparse Computations . 2
1.2 State of The Art . 2
1.3 The Sympiler Solution . 4

1.3.1 Contributions . 4
1.3.2 Scope . 5

1.4 Dissertation Overview . 6

2 Background 7
2.1 Sparse Matrix . 7

2.1.1 Sparse Matrix Storage Formats 8
2.2 Parallel Architectures . 8

2.2.1 Multicore Processors . 9
2.3 Testbed Architectures . 10
2.4 Datasets . 10

2.4.1 Sparse Matrix Dataset . 10
2.4.2 Sparse Quadratic Programming Dataset 10

3 Decoupling Symbolic Information for Code Transformation 12
3.1 Introduction . 13

3.1.1 Motivating Scenario . 13
3.1.2 Static Sparsity Patterns . 15

vi

3.1.3 Contributions . 16
3.2 Sympiler . 16

3.2.1 Sympiler Overview . 16
3.2.2 Symbolic Inspector . 17
3.2.3 Inspector-guided Transformations 18
3.2.4 Enabled Conventional Low-level Transformations 20

3.3 Case Studies . 21
3.3.1 Sparse Triangular Solve . 22
3.3.2 Cholesky Factorization . 23
3.3.3 Other Matrix Methods . 25

3.4 Experimental Results . 26
3.4.1 Methodology . 26
3.4.2 Performance of Generated Code 27
3.4.3 Symbolic Analysis Time . 30

3.5 Related Work . 31

4 Transformation and Inspection for Parallelism 34
4.1 Introduction . 34
4.2 ParSy Overview . 36

4.2.1 H-Level Inspector . 37
4.2.2 Parallel Code Transformation 39
4.2.3 Implementation . 40

4.3 Load-Balanced Level Coarsening (LBC) 41
4.3.1 Problem Definition . 41
4.3.2 LBC Algorithm . 43
4.3.3 Cost Model & Windowing Heuristic 45

4.4 Other Sparse Matrix Methods . 47
4.5 Experimental Results . 48
4.6 Related Work . 55

5 Sparse Fusion 57
5.1 Sparse Fusion . 62

5.1.1 Code Generation . 62
5.1.2 The Inspector in Sparse Fusion 62
5.1.3 Fused Code . 63

5.2 Multi-Sparse DAG Partitioning . 64
5.2.1 Inputs and Output to MSP 65
5.2.2 The MSP Algorithm . 66

vii

5.3 Experimental Results . 71
5.4 Related work . 77

6 Adaptive Sparsity Pattern in Quadratic Programming 78
6.1 Introduction . 78
6.2 Problem Statement and Preliminaries 80

6.2.1 Accuracy . 81
6.2.2 Active-Set KKT System Solutions 82

6.3 SoMod: Sparsity-oriented row modification 85
6.3.1 Initialization Phase . 87
6.3.2 Factor Modification . 92
6.3.3 Triangular Solve and Accuracy Refinement 95

6.4 NASOQ: Numerically Accurate Sparsity-Oriented QP Solver 96
6.4.1 NASOQ-Fixed . 98
6.4.2 NASOQ-Tuned . 98

6.5 Experimental Results . 99
6.5.1 Experimental Setup . 99
6.5.2 Benchmark Repository for Sparse Quadratic Programs 102
6.5.3 Accuracy, Efficiency, and Scalability of NASOQ 102
6.5.4 Effect of Numerical Range . 106
6.5.5 Effect of SoMod . 107

6.6 Related Work . 109

7 Conclusion and Future Work 113

A Appendix for Transforming Sparse Matrix Computations 116
A.1 DAG Partitioners Limitations . 116
A.2 Experimental Results for Xeon Platinum8160 117
A.3 Settings for QP solvers . 118

A.3.1 Gurobi . 119
A.3.2 MOSEK . 119
A.3.3 OSQP . 120
A.3.4 QL . 120

A.4 Application-based breakdown for NASOQ 120

Bibliography 123

viii

List of Tables

2.1 Testbed architectures. 10

3.1 Inspection and transformation elements in Sympiler for triangular solve.
DG: dependency graph, SP (RHS): sparsity patterns of the right-hand
side vector, DFS: depth-first search, unroll: loop unrolling, peel: loop
peeling, dist: loop distribution, tile: loop tiling. 21

3.2 Inspection and transformation elements in Sympiler for Cholesky fac-
torization. SP(A): sparsity patterns of the coefficient A, SP (Lj): spar-
sity patterns of the jthrow of L, unroll: loop unrolling, peel: loop
peeling, dist: loop distribution, tile: loop tiling. 22

3.3 Matrix set: The matrices are sorted based on the number of nonzeros
in the original matrix; nnz refers to number of nonzeros, n is the rank
of the matrix. 26

4.1 Test matrices, sorted in order of decreasing parallelism. nnz is the
number of nonzeros in L. 48

5.1 The list of sparse matrices. 71
5.2 The list of kernel combinations. CD: loops with carried dependencies,

SpIC0: Sparse Incomplete Cholesky with zero fill-in, SpILU0: Sparse
Incomplete LU with zero fill-in, DSCAL: scaling rows and columns of
a sparse matrix. 71

5.3 The achieved GFLOP/s for the baseline code for the kernel combina-
tions in Table 5.2 and for matrices in Table 5.1. 73

6.1 List of NASOQ-Tuned parameters. Each row contains parameters used
in one pass of NASOQ-Tuned. 99

ix

6.2 Failure rate of NASOQ for different ranges of accuracy using range-
space (NASOQ-Range-Space) and full-space (NASOQ-Fixed and NASOQ-
Tuned) methods for small-scale problems in our QP repository. NASOQ-
Fixed has a failure rate comparable to that of NASOQ-Range-Space.
NASOQ-Tuned outperforms NASOQ-Range-Space and has no failures
for accuracies ε = 10−3 and ε = 10−6. 107

A.1 All problems. 121
A.2 Contact simulation problems. 121
A.3 Maros-Mészáros problems. 121
A.4 Model Predictive Control (MPC) problems. 121
A.5 Model reconstruction and object deformation problems. 122

x

List of Figures

2.1 (a) An example sparse matrix A with 5 rows and 5 columns and 9
nonzero entries. (b) The triplet format of A sorted based on row in-
dices. (c) The Compressed Sparse Row (CSR) format of A. (d) The
Compressed Sparse Column (CSC) format of A. 7

2.2 The memory hierarchy of a multicore processor with two cores and
three levels of cache memories. L1 and L2 caches are dedicated to each
processor and L3 is shared between all cores. 9

3.1 Four different codes for solving the linear system in (a). In all four code
variants, matrix L is stored in compressed sparse column (CSC) for-
mat, with {n,Lp,Li,Lx} representing {matrix order, column pointer,
row index, nonzeros} respectively. The dependence graph DGL is the
adjacency graph of matrix L; vertices of DGL correspond to columns
of L and its edges show dependencies between columns in triangular
solve. Vertices corresponding to nonzero columns are colored in blue
and columns that participate in the computation because of the depen-
dence structure are in red. Boxes around columns show supernodes of
different sizes. (b) is a forward substitution algorithm. (c) is a library
implementation that skips iterations when the corresponding entry in
x is zero. (d) is the decoupled code that uses the symbolic information
provided by the reachSet , which is computed by performing a depth-
first search on DGL. (e) is the Sympiler-generated code which peels
iterations corresponding to the columns inside the reach-set with more
than 2 nonzeros. 14

xi

3.2 Sympiler lowers a functional representation of a sparse kernel to imper-
ative code using the inspection sets. It constructs a set of loop nests
and annotates them with domain-specific information that is later used
in inspector-guided transformations. The inspector-guided transfor-
mations use the lowered code and inspection sets as input and apply
transformations. Inspector-guided transformations also provide hints
for low-level transformations by annotating the code. For instance, the
transformation steps for the code in Figure 3.1 are: (a) Sympiler input
code describing input matrices as well as the numerical method; (b)
The initial AST with annotations showing where the VI-Prune and VS-
Block transformations apply; (c) The transformed code after VI-Prune
which has used the pruneSet to add low-level transformation hints such
as peeling iterations 0 and 3; (d) The final code where hinted low-level
transformations are applied (peeling is only shown for iteration zero). 17

3.3 The inspector-guided transformations. Top: The loop over Ik with
iteration space m in (a) transforms to a loop over Ip with iteration
space pruneSetSize in (b). Any use of the original loop index Ik is
replaced with its corresponding value from pruneSet i.e., I ′k. Bottom:
The two nested loops in (c) are transformed into loops over variable-
sized blocks in (d). 18

3.4 An example matrix A and its L factor from Cholesky factorization.
The corresponding elimination tree (T) of A is also shown. Nodes in T
and columns in L highlighted with the same color belong to the same
supernode. The red nonzeros in L are fill-ins. 23

3.5 Pseudo-code of left-looking Cholesky. 23
3.6 Sympiler’s performance compared to Eigen for triangular solve. The

stacked-bars show the performance of the Sympiler (numeric) code with
VS-Block and VI-Prune. The effects of VS-Block, VI-Prune, and low-
level transformations on Sympiler’s performance are shown separately. 27

3.7 The performance of Sympiler (numeric) for Cholesky compared to
CHOLMOD (numeric) and Eigen (numeric). The stacked-bar shows
the performance of the Sympiler-generated code. The effect of VS-
Block and low-level transformations are shown separately. The VI-
Prune transformation is already applied to the baseline code so it is
not shown here. Sympiler-A and CHOLMOD-A refer to versions with
node amalgamation. 29

xii

3.8 Sparse triangular solve symbolic+numeric time for Sympiler and Eigen’s
normalized over the Eigen time. 30

3.9 Symbolic+numeric time for Sympiler, CHOLMOD, and Eigen for the
Cholesky algorithm. All times are normalized over the Eigen’s accu-
mulated symbolic+numeric time. 32

4.1 An example DAG, that is an assembly tree where nodes represent col-
umn blocks and edges show the dependencies between columns during
factorization, is shown in Figure 4.1a. Wavefront methods create a
level set, represented by node coloring; nodes with the same color can
be executed in parallel. Figure 4.1b shows the H-Level set created by
LBC from G in Figure 4.1a. 36

4.2 The H-Level transformation. The loop over I1 in (a) transforms into
two nested loops that iterate over the H-Level set in (b). Any use of
the original loop index I1 is replaced with its corresponding value from
HLevelSet. 39

4.3 The application of the H-Level transformation on blocked left-looking
Cholesky factorization. Figure 4.3b shows the transformed version of
the code in Figure 4.3a with the H-Level transformation. The gray
lines remain unchanged. 39

4.4 The maximal difference in time matches the maximal difference in par-
ticipating nonzeros. Matrix Flan_1565 is used as an example; other
matrices exhibit similar behavior. 46

4.5 The effect of l-partitioning on the performance and load balancing of
Cholesky for Flan_1565 starting from the sink node (shown with 1) to
close to the source nodes (shown with 14). The dark rectangle shows
the search window from the initial point which is point 2. The line
(1) in red shows the actual total runtime using each edge cut, (2) in
dark green shows the maximal difference, and (3) in blue shows the
percentage of actual time spent on the closest-to-sink l-partition. . . . 46

4.6 H-Level transformation for sparse triangular solve. Figure 4.6a shows
an example DAG representing the dependencies for sparse triangular
solve. (b) The blocked forward substitution algorithm with compressed
column format that is annotated with HLevel and Atomic. (c) Code
after H-Level transformation. Gray lines in the code are not affected
by the transformation. 47

xiii

4.7 ParSy’s (numeric) performance for Cholesky compared to MKL Par-
diso (numeric) and PaStiX (numeric) on Haswell-E (top), Haswell-EP
(middle), and Skylake (bottom). All times are normalized over the
level set numeric time. 50

4.8 Speed up and locality relation on Haswell-E. Average memory access
latency is the average cost of accessing memory in ParSy and MKL
Pardiso. The relation between speed-up and the memory access ratio
is approximated with a line. The coefficient of determination or R2 of
the fitted line is 0.65. 51

4.9 Wait time to total runtime of Cholesky’s numerical factorization in
ParSy and MKL Pardiso on Haswell-E. 51

4.10 The performance of ParSy (numeric) for triangular solve compared to
MKL (numeric) on Haswell-E (top), Haswell-EP (middle), and Sky-
lake (bottom) processors. All times are normalized over the level set
numeric time. 52

4.11 Symbolic + numeric time for ParSy-generated code, MKL Pardiso, and
PaStiX for Cholesky on Haswell-E (top), Haswell-EP (middle), and
Skylake (bottom). All times are normalized to PaStiX’s accumulated
symbolic + numeric time. 53

4.12 The performance of ParSy (numeric) for triangular solve on non-chordal
DAGs compared to MKL (numeric) on Haswell-E (top), Haswell-EP
(middle), and Skylake (bottom) processors. All times are normalized
over the level set numeric time. 54

4.13 The symbolic + numeric time for ParSy-generated code and MKL for
triangular solve on on Haswell-E (top), Haswell-EP (middle), and Sky-
lake (bottom) processors. All times are normalized to MKL’s accumu-
lated symbolic + numeric time. 55

5.1 The nonuniform parallelism in the DAGs of sparse incomplete Cholesky
and triangular solver (annotated with unfused) and for the joint DAG
of the two kernels results in load imbalance. Higher value in the y-axis
shows high parallelism in a given wavefront. Wavefront numbers in the
x-axis are numbered based on their order of execution. 58

xiv

5.2 Figures 5.2c-5.2e show three different schedules for running a sparse
lower triangular kernel (SpTRSV) followed by a sparse matrix-vector
multiplication (SpMV) as shown in Figure 5.2b. We choose the number
of processors (r) to be three. Solid purple (G1) and dash-dotted yel-
low (G2) vertices in order represent iterations of SpTRSV and SpMV
and edges show the dependencies between iterations. Dashed edges
in Figure 5.2b show dependencies between two kernels and correspond
to the nonzero elements of matrix F . The unfused implementation
schedules each DAG separately as shown in Figure 5.2c. Two differ-
ent fused implementations in Figure 5.2d and 5.2e use both DAGs and
dependencies between kernels to build a fused schedule. 59

5.3 Sparse fusion’s input and the driver code. 61
5.4 The general form of the sparse fusion code transformation with its two

variants, interleaved and separated. I1...In and J1...Jm represent
two loop nests. h’ and g’ are data access functions. FusedSchedule
contains the schedule for iterations of loops I1, shown with L1 and J1,
shown with L2. 61

5.5 Stages of MSP for DAGs G1 and G2 and matrix F in the running
example shown in Figure 5.2b where the reuse ratio (reuse_ratio) is
smaller than one and number of processors (r) is three. The first step of
the algorithm selects G1 and createsH partitioning for three processors
using the LBC algorithm as shown in Figure 5.5a. Then it pairs each
Hi,j through dependencies in matrix F to create partitioning T of G2 as
shown in Figure 5.5b. The partitions with the same line pattern/color
are pair partitions. In the second step, MSP merges pair partitions
that cannot be dispersed such as first w-partitions of s-partitions 2
and 3 (Vs3,w1 and Vs2,w1) in Figure 5.5b, these are merged into Vs2,w1

in Figure 5.5c. Slack vertices, which are denoted as S are shown with
blue dotted circles in Figure 5.5c. Slack vertices are assigned into
imbalanced w-partitions as shown in Figure 5.5d. Since the reuse ratio
is smaller than one, vertices inside each partition are packed separately
as shown in Figure 5.2e. 64

5.6 Performance of different implementations shown with speedup from
dividing baseline time by implementation time. 73

xv

5.7 The range of speedup for all matrices achieved as a result of using
interleaved packing vs. separated packing. The labels on bars show
how often the choice of packing strategy made by sparse fusion leads
to performance improvement. 74

5.8 Average memory access time and the OpenMP potential gain for matrix
bone010. The legends show the implementation, values are normalized
over ParSy. 75

5.9 The number of executor runs to amortize inspector cost. Values are
clipped between -5 and 80. (lower is better) 76

6.1 The symbolic initialization phase of SoMod starts with creating an in-
clusive matrix, shown in Figure 6.1b from the matrices in Figure 6.1a
which are inputs to the QP problem in Equation 6.1. The inclusive ma-
trix is then permuted with a fill-reducing permutation to compute the
sparsity pattern of the L-factor with minimum number of fill-ins. The
sparsity pattern of the L-factor of the inclusive matrix in Figure 6.1b
is computed and shown in Figure 6.1c. Boundaries of Supernodes are
shown with dotted lines and supernode numbers are illustrated be-
low the L-factor. The corresponding inclusive (assembly) tree of the
L-factor in Figure 6.1c is shown in Figure 6.1d. The colored nodes cor-
respond to the inequality constraint rows (matrix C in Figure 6.1a).
The constraint-aware supernode creation strategy ensures that supern-
odes corresponding to the inequality constraint nodes contain only a
single column. The colored nodes of the inclusive tree are removed to
create the pruned inclusive tree passed to numerical factorization along
with the L-factor in Figure 6.1c. 86

xvi

6.2 Factor modification example starting with the pruned inclusive tree
(Figure 6.2a) and the L-factor (Figure 6.2d) that are computed in the
initialization phase, in order, by removing all nodes corresponding to
the inequality matrix from the inclusive tree in Figure 6.1d and by
hiding all rows of the inequality matrix in the L-factor in Figure 6.1c.
SoMod symbolically adds rows that correspond to nodes 2 and 10 (rows
5 and 14, respectively) to the inclusive matrix using the row addition al-
gorithm, resulting in a new pruned inclusive tree shown in Figure 6.2b.
The corresponding supernodes in the L-factor in Figure 6.2e, shown in
red, are also visible and will be updated using the numerical modifi-
cation algorithm. Figure 6.2c is the result of removing node 10 from
Figure 6.2b by using the symbolic row removal algorithm. Column 14
of the L-factor (which corresponds to node 10 in the tree) in Figure 6.2f
becomes invisible after row removal. 94

6.3 Failure rate of NASOQ-Fixed, NASOQ-Tuned, OSQP, OSQP-Polished,
Gurobi, QL, and MOSEK across different ranges of accuracy (10−3,
10−6, and 10−9) and for both small-scale (top) and large-scale (bottom)
QP problems. NASOQ-tuned has the lowest failure rate compared to
all other QP solvers for problems of different scales and for different
requested accuracies. 103

6.4 Performance profiles for NASOQ-Fixed, NASOQ-Tuned, OSQP, OSQP-
Polished, Gurobi, QL, and MOSEK across different ranges of accuracy
(from left to right: 10−3, 10−6, and 10−9) and for small-scale (top) and
large-scale (bottom) QP problems from our repository. Lines to the
left are more efficient, and lines higher on the y-axis solve a greater
percentage of problems within a given performance threshold. The
figures show that NASOQ-Fixed and NASOQ-Tuned are, for almost
all accuracies and all problem scales, more efficient than available QP
solvers and are able to solve more of the QP problems in our repository. 104

6.5 Performance profile of NASOQ using SoMod (NASOQ-Fixed), using
CHOLMOD row modification (NASOQ-Fixed-CHOLMOD), solving
from scratch using LBL (NASOQ-Fixed-LBL), and solving from scratch
using MKL (NASOQ-Fixed-MKL). OSQP is also shown as a reference
solver. NASOQ-Fixed (green line) performs better than the modified
versions of NASOQ. Note that this performance profile contains both
small and large QP instances, unlike Figure 6.4. 108

xvii

A.1 Performance of DAGP and LBC DAG partitioners for DAGs with dif-
ferent number of edges in an individual and joint DAG. 117

A.2 Performance of LBC DAG partitioner for one DAG and joint DAG. . 117
A.3 Performance of different implementations shown with speedup from

dividing baseline time by implementation time. The target architecture
is Xeon Platinum8160 with 24 cores. 118

A.4 The number of executor runs to amortize inspector cost. Values are
clipped between -5 and 80. (lower is better) 118

xviii

Chapter 1

Introduction

Sparse matrix computations are an important class of algorithms frequently used
in scientific simulations and numerical optimization. Sparse matrix kernels often
dominate the overall execution time of many simulations. The performance and
efficient memory usage of these simulations and algorithms depend heavily on their
use of specialized sparse matrix data structures that only store the nonzero entries.
However, such compaction is done using index arrays that result in indirect array
accesses such as A[B[i]] where A and B are both arrays. Compilers only apply a
limited set of optimizations to sparse code because of the indirection from indexing
and looping over the nonzero elements of a sparse data structure. Numerical libraries
can provide high-performance code for sparse kernels however they must be manually
tuned and optimized for different inputs and architectures, and their performance
stagnates with hardware advances.

This dissertation presents a set of code transformations and algorithms, all imple-
mented in a novel code generator called Sympiler, that automates the optimization of
sparse matrix codes on parallel processors. Sympiler takes a sparse method, arising
from a sparse linear system or sparse numerical optimization, and decouples informa-
tion related to the computation pattern of the method, i.e., symbolic information, and
uses this information to transform the code to vectorizable and parallel code. Sympiler
also enables the reuse of symbolic information when the computation pattern remains
static for a period of time in the simulations or for when it changes modestly. These
optimization techniques combined lead to Sympiler generating a code that is faster
than that of hand-written and highly optimized libraries. Because Sympiler is a code
generator, similar to compilers, it requires programming and tuning efforts from the
user. This chapter provides background and motivation for the research presented in
this dissertation and explains the solved challenges and the proposed contributions.

1

CHAPTER 1. INTRODUCTION 2

1.1 Sparse Matrix Computations

Sparse matrix kernels are found in a large class of numerical methods as well as
optimization algorithms. Numerical methods that solve linear systems of equations
are classified as direct and indirect (iterative) methods. Each of these solver classes
solves linear system Ax = b to find unknown vector x where A is often a large sparse
matrix, and b is the right-hand side vector. Direct sparse linear solvers directly
decompose matrix A. The decomposition is done using a factorization algorithm
such as LU and Cholesky [71], and then the computed factors are used to find the
final solution x in a solve phase which typically involves a sparse triangular solve
operation. The indirect class of sparse linear solvers uses an iterative scheme to
find the solution and they often require factorizing a sparse matrix, e.g. for their
preconditioning, and also computing numerous matrix-vector multiplications to for
example update the residual. Optimization methods also frequently operate on sparse
matrices. For example, sparse quadratic programming algorithms in each iteration
require solving a sparse linear system of equations.

Due to the pivotal role of sparse matrix computations in many numerical and
optimization methods, a large class of prior work has attempted to accelerate their
execution. A sparse matrix is defined as a matrix in which the majority of its entries
are zero. To efficiently store a sparse matrix, it is typically stored in a compressed
form such as a compressed row or a compressed column storage format where nonzero
elements are stored consecutively row-wise or column-wise with an extra array to store
the beginning of the rows or columns. To operate on the sparse matrix, this compact
form is accessed. While this compaction will lead to efficient storage, it creates nu-
merous challenges in optimizing the sparse matrix computations. For example, data
dependencies between operations and accesses are challenging to track but are neces-
sary to know for running sparse code in parallel. Also, using the memory hierarchy of
the processor efficiently is challenging due to compact and irregular indexing in the
code.

1.2 Current Solutions to Accelerate Sparse Matrix Computa-

tions and Limitations

The most common approach to accelerating sparse matrix computations is to identify
a specialized library that provides a manually-tuned implementation of the specific
sparse matrix routine. A large number of sparse libraries are available (e.g., Su-
perLU [44], MUMPS [6], CHOLMOD [26], KLU [42], UMFPACK [35]) for different

CHAPTER 1. INTRODUCTION 3

numerical kernels, supported architectures, and specific kinds of matrices. Paral-
lel sparse libraries, such as Intel’s Math Kernel Library (MKL) [192], Pardiso [192,
156], PaStiX [86], and SuperLU [111], provide manually-optimized parallel imple-
mentations of sparse matrix algorithms and are some of the most commonly-used
libraries in simulations using sparse matrices. These libraries use numerical-method-
specific code at runtime, during a phase called symbolic factorization, to determine
data dependencies. Based on this dependence information, different libraries imple-
ment different forms of parallelism. For example, PaStiX uses static scheduling of
a fine-grained task graph based on empirical measurements of expected runtime for
each task; in contrast, MKL Pardiso implements a form of dynamic scheduling for its
fine-grained task graph. While hand-written libraries can provide high performance,
they must be manually ported to new architectures and may stagnate as architec-
tural advances continue. Alternatively, compilers can be used to optimize code while
providing architecture portability due to abstracting architecture details from code
transformations.

Compiler loop transformation frameworks such as those based on the polyhedral
model use algebraic representations of loop nests to transform code and successfully
generate highly efficient parallel dense matrix kernels [10, 105, 145, 185, 181, 25].
However, such frameworks are limited when dealing with non-affine loop bounds
and/or array subscripts, both of which arise in sparse codes. Previous work has
extended compilers to resolve memory access patterns in sparse codes by building
runtime inspectors to examine the nonzero structure and using executors to transform
code execution and implement parallelism [187, 148, 204]. Inspectors use runtime
information to build directed acyclic graphs (DAGs) that expose data dependence
relations. The DAGs are traversed in topological order to create a list of level sets
that represent iterations that can execute in parallel; this is known as wavefront
parallelism. Synchronization between level sets ensures the execution respects data
dependencies. However, synchronization between levels in wavefront parallelism can
lead to high overheads since the number of levels increases with the DAG critical path.
For sparse kernels such as Cholesky with non-uniform workloads, wavefront methods
can additionally lead to load imbalance. Also, the wavefront techniques only enable
thread-level parallelism and do not improve the performance of each thread, such as
by using vectorizations.

The challenges with the current inspector-executor frameworks are as follows:

• The current techniques apply conservative transformations or give up transform-
ing sparse codes due to indirect memory accesses. This leads to inefficient use
of the memory hierarchy and does not efficiently explore instruction-level paral-

CHAPTER 1. INTRODUCTION 4

lelism.

• Available wavefront approaches support parallelism by executing iterations of
the sparse kernel in parallel. However, because iterations of a sparse kernel have
different workloads, the schedule provided by wavefront techniques often leads to
load imbalance. Also, they do not optimize the kernel to improve data locality
primarily because their scheduling is based on wavefronts.

• Available inspector-executors (as well as libraries) optimize sparse kernels indi-
vidually. This leads to load imbalance due to dependencies that exist between
two sparse kernels. They also miss data reuse opportunities that exist between
kernels.

• It is common that in a scientific simulation, the sparsity patterns of matri-
ces change during simulation. These changes are often incremental and small.
Inspector-executor frameworks do not exploit this and require the entire set of
iterations to be recomputed for any change in the sparsity patterns.

1.3 The Sympiler Solution

Sympiler is a domain-specific code generator that enables the efficient optimization of
a given kernel from specific classes of sparse matrix kernels on single-core and parallel
architectures. Sympiler also supports the joint optimization of sparse kernels, and
for quadratic problems, efficiently updates the sparse matrix kernel factorization for
when the sparsity pattern changes during the solver iterations.

Similar to libraries, the general Sympiler solution does symbolic analysis. How-
ever, this analysis is done at compile-time to enable the automatic application of
numerous code transformations and optimizations that libraries and compilers can-
not apply. The symbolic analysis is conducted using an inspector, and information
from the inspection is used to transform an internal representation of the kernel code
to generate fast code.

1.3.1 Contributions

This dissertation presents a number of inspection strategies and novel code trans-
formations for sparse computations to solve the list of limitations in Section 1.2 in
optimizing sparse matrix kernels. The contributions are:

• A symbolic decoupling strategy along with two inspectors as well as Inspector-
guided transformations that leverage compile-time information to automatically

CHAPTER 1. INTRODUCTION 5

optimize sparse matrix codes for a single-core processor. The decoupling strategy
and inspectors in Sympiler use runtime information to tile iterations and improve
instruction-level parallelism and locality; Sympiler also prunes the iteration space
to reduce the number of unnecessary iterations.

• A new Load-Balanced Level Coarsening (LBC) algorithm that inspects sparse
kernel data dependence graphs for parallelism while maintaining an efficient
trade-off between locality, load balance, and parallelism by coarsening level sets
from wavefront parallelism. A novel code transformation, called H-level is also
proposed to support running the created schedule of LBC. Also, a novel pro-
portional cost model included in LBC that creates well-balanced partitions for
sparse kernels with irregular computations such as sparse Cholesky.

• A Multi-Sparse DAG Partitioner (MSP) algorithm that inspects the data depen-
dence graph of two sparse kernels to create a load-balanced parallel schedule of
the fused code with good locality. MSP uses a novel vertex assignment strategy
that allows vertices of two sparse kernels to be dispersed throughout execution
to improve load balance. Two novel packing strategies in MSP, along with code
transformations to enable the packing, that improves data locality within and
between the iterations of the two sparse kernels based on a reuse-ratio metric.

• A new sparsity-oriented row modification method, SoMod that enables fast fac-
torization for matrix changes via efficient updates of previously computed factors;
SoMod used inside a Quadratic Programming (QP) solver called NASOQ that
enables solving large scale sparse quadratic programs. As a result, the factoriza-
tion in the QP solver does not have to be recomputed for every change in the
sparsity. We also propose a new Load-balanced Blocked LDL factorization algo-
rithm (LBL) for the fast, accurate factorization of sparse symmetric indefinite
systems when changes are not incremental.

1.3.2 Scope

The proposed algorithms and strategies in Sympiler are tested extensively using a
large set of matrices from real-world scientific applications and on a number of sparse
kernels used in direct and iterative linear system solvers as well QP solvers. The sup-
ported kernels are Cholesky and LDL factorization, triangular solvers, matrix-vector
multiplication, Gauss-Seidel, GMRes, incomplete Cholesky, and incomplete LU. How-
ever, the Sympiler solution can be applied to other sparse codes with extensions that
we plan to address in future work.

CHAPTER 1. INTRODUCTION 6

1.4 Dissertation Overview

Chapter two provides a general overview of the concepts that are used throughout
the dissertation. Chapter three introduces Sympiler and how it decouples symbolic
information to transform sparse codes. Chapter four presents LBC and H level trans-
formation for transforming sparse codes into parallel code for multicore processors.
Chapter five introduces sparse fusion that fuses two loops with sparse dependencies
to improve load balance and locality. Chapter six presents LBL with SoMod, a new
solver for indefinite linear systems that enables reusing previous solves when modest
changes happen. The same chapter also shows how LBL and SoMod are used in
NASOQ, a new quadratic programming solver, and compares with other QP solvers.
The final chapter concludes the dissertation and discusses future directions.

Chapter 2

Background

This section of the dissertation provides a brief introduction to how sparse matrices
are stored in compact storage formats. It also describes the architecture of multi-core
processors and their memory subsystem which is the focus of the dissertation. Finally,
the datasets that are used to evaluate the proposed techniques in the dissertations
are presented.

(a) Sparse Matrix A

1 6
2 8

3
7 4

9 5

Ari

Aci

Ax

(b) Triplet Format

0 0 1 1 2 3 3 4 4

0 1 1 3 2 1 3 0 4

1 6 2 8 3 7 4 9 5

Ap

Ai

Ax

(c) CSR Format

0 2 4 5 7 9

0 1 1 3 2 1 3 0 4

1 6 2 8 3 7 4 9 5

Ap

Ai

Ax

(d) CSC Format

0 2 5 6 8 9

0 4 0 1 3 2 1 3 4

1 9 6 2 7 3 8 4 5

1

Figure 2.1: (a) An example sparse matrix A with 5 rows and 5 columns and 9 nonzero entries. (b)
The triplet format of A sorted based on row indices. (c) The Compressed Sparse Row (CSR) format
of A. (d) The Compressed Sparse Column (CSC) format of A.

2.1 Sparse Matrix

A sparse matrix is a matrix with most entries zeros. The number of zeros in a matrix
depends on the domain and application it came from. An example sparse matrix is
shown in Figure 2.1a.

7

CHAPTER 2. BACKGROUND 8

2.1.1 Sparse Matrix Storage Formats

Numerous storage methods and data structures can be used to store a sparse matrix.
All data structures use a compact representation to only store nonzero entries. In
addition to the compact representation, data structures should be simple and flexible
so they can be efficiently used in different applications and matrix operations. This
subsection discusses some of the most widely used formats used across this disserta-
tion.

Triplet Form

The triplet format uses three arrays to store every entry with its row and column
numbers. Figure 2.1b shows the three arrays of the triplet form corresponding to the
matrix shown in Figure 2.1a which are sorted based on row indices. For example, the
first nonzero in the first row is stored in Ax[0] and its corresponding row and column
numbers are in Ari[0] and Aci[0].

Compressed Sparse Row (CSR) Format

The CSR format stores the sparse matrix using three arrays. The Ax array stores
the nonzero elements of the matrix row by row and corresponding column indices to
nonzero entries are stored in Ai. Each entry Ap[i] points to the first value of row i
in Ax and its corresponding column index in Ai. For example, Figure 2.1c shows the
CSR storage of the sparse matrix in Figure 2.1a. The second nonzero of the second
row is stored in Ax[Ap[1]+1] which is Ax[3] and its column index is Ai[3].

Compressed Sparse Column (CSC) Format

The CSC format stores the nonzero values of the matrix using three arrays. The
CSC format follows the same scheme as the CSR format with the difference that
values are stored column by column and thus row indices are stored. Each entry in
Ap[i] points to the location of the first nonzero in column i in Ax and the locations
its corresponding row index in Ai. For example Figure 2.1d shows the CSC storage
format of matrix in Figure 2.1a. The second nonzero of the fourth column is stored
in Ax[Ap[3]+1] which is Ax[7] and its column index is Ai[7].

2.2 Parallel Architectures

The Flynn classification [60] presents three parallel schemes to process data and
instructions on parallel processors: Single Instruction, Multiple Data (SIMD) where

CHAPTER 2. BACKGROUND 9

processors run the same instruction on different data; Multiple Instruction, Single
Data (MISD) where a set of instructions are applied to the same data; Multiple
Instruction, Multiple Data (MIMD) where there are different processors and each
executes a set of instructions on different piece of data.

Parallel architectures are also classified into two major classes based on their mem-
ory architectures: distributed-memory and shared-memory. In distributed memory
systems, each processor has a separate memory space. Accesses to another memory
space should be done explicitly in the program. However, processors in a shared mem-
ory processor use the same address space and data communication between processors
is implicit.

Core 1

L1 Cache

L2 Cache

Core 2

L1 Cache

L2 Cache

L3 Cache RAM

Figure 2.2: The memory hierarchy of a multicore processor with two cores and three levels of cache
memories. L1 and L2 caches are dedicated to each processor and L3 is shared between all cores.

2.2.1 Multicore Processors

Multicore processors are used in a wide range of devices including supercomputers,
embedded devices, and personal computers. Multicore processors have multiple cores
and thus can benefit from MIMD type parallelism. Also, each core typically has
vector processors that enable the used of SIMD parallelism as well.

Memory Hierarchy

The central processing unit (CPU) requires access to the main memory to execute
instructions. Main memory accesses are several times slower than the CPU clock
frequency and recent technological advances have failed to improve the time for such
accesses. Instead, hardware platforms have a smaller but cheap-to-access memory
space called the cache. By predicting future accesses to the main memory, data can
be prefetched into the cache. An example memory hierarchy of a multicore processor
with three levels of cache memories is shown in Figure 2.2. As shown the closest cache
level to the CPU is the L1 cache which is also the fastest and also smaller than other

CHAPTER 2. BACKGROUND 10

Table 2.1: Testbed architectures.

Family Haswell-E Haswell-EP Skylake
Processor Core™ i7-5820K Xeon™ E5-2680v3 Xeon™ Platinum 8160
Cores 6 @ 3.30 GHz 12 @ 2.5 GHz 24 @ 2.1 GHz
L3 cache 15MB 30MB 33MB

levels. In Figure 2.2 L1 and L2 caches are dedicated to each core and the last level
cache (LLC) is shared amongst all cores.

2.3 Testbed Architectures

All techniques proposed in this dissertation are evaluated on a range of multicore
processors listed in Table 2.1. Architectures are selected with different number of
cores, i.e. 6, 12, and 24 to evaluate the scalability of the parallel code. At the
time of this work, the Haswell-E processor is a standard desktop processor. The
other two processors, i.e. Haswell-EP and Skylake are two processors used in Comet
and Stampede2 supercomputers. Access to the supercomputers are provided via
XSEDE [183].

2.4 Datasets

Throughout the dissertation, all techniques are evaluated on a range of sparse ma-
trices for linear solver applications and also sparse quadratic programs for numerical
optimization applications.

2.4.1 Sparse Matrix Dataset

The matrices that are selected to evaluate the proposed techniques in the dissertation
are symmetric positive definite (SPD) matrices of different sizes from the SuiteSparse
matrix repository [41]. The list of matrices for each technique is provided in the chap-
ter. For example, Chapter 3 uses smaller in size matrices to evaluate the performance
of single threaded codes but selected matrices in Chapters 4 and 5 are amongst the
largest SPD matrices in the repository to demonstrate how the proposed techniques
work for large scale applications.

2.4.2 Sparse Quadratic Programming Dataset

To evaluate the efficiency of the proposed techniques in this dissertation on numeri-
cal optimization methods, a set of sparse Quadratic Programming (QP) problems is

CHAPTER 2. BACKGROUND 11

collected from real-world applications and with different sizes. The number of vari-
ables in the QP problems of the repository is within the range of 50–114309 and their
number of constraints are between 20–10k.

Chapter 3

Decoupling Symbolic Information for
Code Transformation

For several sparse matrix methods such as LU and Cholesky, it is well known that
viewing their computations as a graph (e.g., elimination tree, dependence graph,
or quotient graph) and applying a method-dependent graph algorithm yields infor-
mation about dependencies that can then be used to more efficiently compute the
numerical method [37]. Most high-performance sparse matrix computation libraries
utilize symbolic information, but couple this symbolic analysis with numeric compu-
tation, further making it difficult for compilers to optimize such codes. This chapter
presents Sympiler, a domain-specific code generator that produces high-performance
sparse matrix code. Sympiler decouples symbolic analysis from numeric computation
and transforms the sparse code using symbolic information. The symbolic informa-
tion is obtained using a symbolic inspector. Inspector-guided transformations, such
as variable-sized blocking, are then applied resulting in performance equivalent to
hand-tuned libraries. But Sympiler goes further than existing numerical libraries by
generating code for a specific matrix nonzero structure. Because the matrix struc-
ture often arises from properties of the underlying physical system that the matrix
represents, in many cases the same structure reoccurs multiple times, with different
values of nonzeros. Thus, Sympiler-generated code can combine inspector-guided and
low-level transformations to produce even more efficient code. The transformations
applied by Sympiler improve the performance of sparse matrix codes through apply-
ing single-core optimizations such as vectorization and increasing data locality. The
content of this chapter is published in the conference paper [29].

12

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 13

3.1 Introduction

Sparse matrix computations are at the heart of many scientific applications and data
analytics codes. The performance and efficient memory usage of these codes depends
heavily on their use of specialized sparse matrix data structures that only store the
nonzero entries. However, such compaction is done using index arrays that result in
indirect array accesses. Due to these indirect array accesses, it is difficult to apply
conventional compiler optimizations such as tiling and vectorization even for static
index array operations like sparse matrix vector multiply. A static index array does
not change during the algorithm; for more complex operations with dynamic index
arrays such as matrix factorization and decomposition, the nonzero structure is mod-
ified during the computation, making conventional compiler optimization approaches
even more difficult to apply.

Libraries and compilers are commonly used to accelerate sparse matrix computa-
tions. Hand-written specialized libraries (e.g., SuperLU [44], MUMPS [6], CHOLMOD
[26], KLU [42], UMFPACK [35]) provide high performance, but they must be manu-
ally ported to new architectures and may stagnate as architectural advances continue.
Alternatively, compilers can be used to optimize code while providing architecture
portability. Polyhedral compilers [10, 105, 145, 185, 181, 25] use algebraic represen-
tations of loop nests to transform code and successfully generate highly-efficient dense
matrix kernels. Due to existing non-affine loop bounds and/or array subscripts in
sparse codes, run-time inspectors [186, 175, 184, 188, 187] extend polyhedral models
to examine the nonzero structure and to use executors to transform the code to be
executed. However, these techniques are limited to transforming sparse kernels with
static index arrays.

Sympiler addresses limitations of existing compilers and libraries by performing
symbolic analysis at compile time to specialize the code for the nonzero pattern
whereas the inspector-executor approaches can only reorder data and schedules. Sym-
bolic analysis is a term from the numerical computing community; it uses the nonzero
pattern of the sparse matrix to analyze computation patterns. Information from sym-
bolic analysis can be used to make subsequent numeric manipulation faster, and can
be reused as long as the matrix nonzero structure remains constant.

3.1.1 Motivating Scenario

The sparse triangular solve takes a lower triangular matrix L and a right-hand side
(RHS) vector b and solves the linear equation Lx = b for x. It is a fundamental
building block in many numerical algorithms such as factorization [37, 111], direct

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 14

1
2
• 3

4
• 5

• • • • 6
• 7

• • 8
• • • • 9

• • • 10

L: {n,Lp,Li,Lx}

*

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10

x

=

•

•

b

1

2

3
4 5

6

7

8
9

10

Dependence Graph (DGL)
β = {i|bi 6= 0} = {1, 6}
ReachL(β) = {1, 6, 7, 8, 9, 10}

1

(a)

x=b; // copy RHS to x

for(j=0;j<n;j++){

x[j]/=Lx[Lp[j]];

for(p=Lp[j]+1;p<Lp[j+1];p++){

x[Li[p]]-=Lx[p]*x[j];}}

(b) Forward substitution

x=b;

x[0] /= Lx[0]; // Peel col 0

for(p = 1; p < 3; p++)

x[Li[p]] -= Lx[p] * x[0];

for(px=1;px<3;px++){

j=reachSet[px];x[j]/=Lx[Lp[j]];

for(p=Lp[j]+1;p<Lp[j+1];p++)

x[Li[p]]-=Lx[p]*x[j];}

x[7] /= Lx[20]; // Peel col 7

for(p = 21; p < 23; p++)

x[Li[p]] -= Lx[p] * x[7];

for(px=4;px<reachSetSize;px++){

j=reachSet[px];x[j]/=Lx[Lp[j]];

for(p=Lp[j]+1;p<Lp[j+1];p++)

x[Li[p]]-=Lx[p]*x[j];}

(e) Sympiler-generated

x=b;

for(j=0;j<n;j++){

if(x[j] != 0){

x[j]/=Lx[Lp[j]];

for(p=Lp[j]+1;p<Lp[j+1];p++)

x[Li[p]]-=Lx[p]*x[j];}}

(c) Library implementation

x=b;

for(px=0;px<reachSetSize;px++){

j=reachSet[px];

x[j]/=Lx[Lp[j]];

for(p=Lp[j]+1;p<Lp[j+1];p++){

x[Li[p]]-=Lx[p]*x[j];}}

(d) Decoupled code

Figure 3.1: Four different codes for solving the linear system in (a). In all four code variants,
matrix L is stored in compressed sparse column (CSC) format, with {n,Lp,Li,Lx} representing
{matrix order, column pointer, row index, nonzeros} respectively. The dependence graph DGL is
the adjacency graph of matrix L; vertices of DGL correspond to columns of L and its edges show
dependencies between columns in triangular solve. Vertices corresponding to nonzero columns are
colored in blue and columns that participate in the computation because of the dependence structure
are in red. Boxes around columns show supernodes of different sizes. (b) is a forward substitution
algorithm. (c) is a library implementation that skips iterations when the corresponding entry in x is
zero. (d) is the decoupled code that uses the symbolic information provided by the reachSet , which
is computed by performing a depth-first search on DGL. (e) is the Sympiler-generated code which
peels iterations corresponding to the columns inside the reach-set with more than 2 nonzeros.

system solvers [34], and rank update methods [38], where the RHS vector is often
sparse. A naïve implementation visits every column of the matrix L to propagate the
contributions of its corresponding x value to the rest of x (see Figure 3.1b). However,
when b is sparse the solution vector is also sparse which can reduce the iteration
space of the sparse triangular solve. The reduced iteration space is proportional
to the number of nonzero values in x. To benefit from this property, the nonzero
pattern of x has to be computed. Based on a theorem from Gilbert and Peierls
[66], the dependence graph DGL = (V,E) for matrix L with nodes V = {1, ..., n}
and edges E = {(j, i)|Lij 6= 0} can be used to compute the nonzero pattern of x,
where n is the matrix rank and numerical cancellation is neglected. The nonzero
indices in x are given by ReachL(β) which is the set of all nodes reachable from any
node in β = {i|bi 6= 0} and is computed by performing a depth-first search on the
directed graph DGL starting with β. An example dependence graph is illustrated in
Figure 3.1a. The blue colored nodes correspond to the set β and the final reach-set
ReachL(β) contains all the colored nodes.

Figure 3.1 shows four different implementations of sparse triangular solve. All

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 15

solvers shown in Figure 3.1 assume the input matrix L is stored in a compressed
sparse column (CSC) storage format. While the naïve implementation in Figure 3.1b
traverses all columns, the typical library implementation shown in Figure 3.1c skips
iterations when the corresponding value in x is zero.

The implementation in Figure 3.1d shows a decoupled code that uses the sym-
bolic information provided by the precomputed reach-set. This decoupling simplifies
numerical manipulation and reduces the run-time complexity from O(|b|+ n+ f) in
Figure 3.1c to O(|b| + f) in Figure 3.1d, where f is the number of floating point
operations and |b| is the number of nonzeros in b. Sympiler goes further by build-
ing the reach-set at compile time and using it to generate code specialized for the
specific matrix structure and the RHS. The Sympiler-generated code is shown in
Figure 3.1e, where the code only iterates over reached columns and peels iterations
where the number of nonzeros in a column is greater than some threshold (in the
figure this threshold is 2). The peeling transformation splits some iterations of a
loop and performs them outside the body of the loop. These peeled loops can be
further transformed with vectorization to speed up execution. This shows the power
of fully decoupling the symbolic analysis phase from the code that manipulates nu-
meric values: the compiler aggressively applies conventional optimizations using the
reach-set to guide the transformations. On matrices from the SuiteSparse Matrix
Collection [41], the Sympiler-generated code shows speedups between 8.4× to 19×
with an average of 13.6× compared to the forward solve code (Figure 3.1b) and
from 1.2× to 1.7× with an average of 1.3× compared to the library-equivalent code
(Figure 3.1c).

3.1.2 Static Sparsity Patterns

Sympiler takes advantage of the fundamental concept that the structure of sparse
matrices in scientific codes is dictated by the physical domain and as such does not
change in many applications. This structure often arises from the physical topology of
the underlying system, the discretization, and the governing equations. These remain
unchanged for long periods in simulations across many domains. Some examples in-
clude: (i) solving nonlinear time-dependent differential equations, where the Jacobian
matrix has a static sparsity pattern for each time point while the numerical values
change (example domains include fluid dynamics [113] and electromagnetics [118,
48]); (ii) design problems where values or parameters are chosen to maximize some
measure of performance; (examples include computer animation [13, 146]); (iii) do-
mains where the sparse matrix is assembled from a physical topology such as power
system modeling; (iv) controlling rigid multibody movements in robotics applications

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 16

where a sequence of linear systems needs to be solved for a static input [140]; and
(v) simulations where the sparse stiffness matrix is assembled using a discretized
mesh and governing equations and remains static for long periods (e.g. aerospace and
electromagnetic simulations).

3.1.3 Contributions

This chapter describes Sympiler, a sparsity-aware code generator for sparse matrix
algorithms that leverages symbolic information to generate fast code for a specific
matrix structure. Major contributions of this chapter are:

• A novel approach for building compile-time symbolic inspectors that obtain in-
formation about a sparse matrix for use during compilation.

• Inspector-guided transformations that leverage compile-time information to trans-
form sparse matrix code for specific algorithms.

• Implementations of symbolic inspectors and inspector-guided transformations
for two algorithms, namely the sparse triangular solve and the sparse Cholesky
factorization.

• A demonstration of the performance impact of our code generator, showing
that Sympiler-generated code outperforms state-of-the-art libraries for triangular
solve and Cholesky factorization by up to 1.7× and 6.3× respectively.

3.2 Sympiler: A Symbolic-Enabled Code Generator

Sympiler generates efficient sparse kernels by tailoring sparse code to specific ma-
trix sparsity structures. By decoupling the symbolic analysis phase, Sympiler uses
information from symbolic analysis to guide code generation for the numerical ma-
nipulation phase of the kernel. In this section, we describe the overall structure of
the Sympiler code generator, as well as the domain-specific transformations enabled
by leveraging information from the symbolic inspector.

3.2.1 Sympiler Overview

Sympiler currently supports sparse triangular solve and Cholesky factorization. Given
one of these numerical methods and an input matrix stored using the compressed
sparse column (CSC) format, Sympiler utilizes a method-specific symbolic inspector
to obtain information about the matrix. Sample code that uses Sympiler is shown
in Figure 3.2a, specifying the input matrix and numerical method. The numerical

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 17

int main() {

Sparse A(type(float,64),

"Matrix.mtx");

Sparse rhs(type(float,64),

"RHS.mtx");

Triangular trns(A,rhs);

trns.sympile_to_c("triang");

}

(a) Input code

Symbolic InspectorSparsity Pattern

Numerical
Method

VS-Block and VI-Prune

Inspector-Guided
Transformations

Low-Level
Transformations

Code
Generation

VI-Prune

for sol.j0 in 0..Lsp.n

VS-Block

x[bspj0]/=Lx[Lsp.diag(j0)];
VS-Block

for sol.j1 in Lsp.colj0..Lsp.colj0+1
x[Lsp.rowj1]-=Lx[j1]*x[bspj0];

(b) Initial AST

peel(0,3)

for sol.p0 in 0..pruneSetSize

j0=pruneSetp0
;

x[bspj0]/=Lx[Lsp.diag(j0)];
vec(0)

for sol.j1 in Lsp.colj0..Lsp.colj0+1
x[Lsp.rowj1]-=Lx[j1]*x[bspj0];

(c) After VI-Prune

s0=pruneSet0;
x[bsps0]/=Lx[Lsp.diag(s0)];
for sol.j1 in Lsp.cols0..Lsp.cols0+1
x[Lsp.rowj1]-=Lx[j1]*x[bsps0];

for sol.p0 in 0..pruneSetSize

j0=pruneSetp0;

x[bspj0]/=Lx[Lsp.diag(j0)];
for sol.j1 in Lsp.colj0..Lsp.colj0+1
x[Lsp.rowj1]-=Lx[j1]*x[bspj0];

(d) After Low-Level Transformations

1Figure 3.2: Sympiler lowers a functional representation of a sparse kernel to imperative code using
the inspection sets. It constructs a set of loop nests and annotates them with domain-specific infor-
mation that is later used in inspector-guided transformations. The inspector-guided transformations
use the lowered code and inspection sets as input and apply transformations. Inspector-guided trans-
formations also provide hints for low-level transformations by annotating the code. For instance,
the transformation steps for the code in Figure 3.1 are: (a) Sympiler input code describing input
matrices as well as the numerical method; (b) The initial AST with annotations showing where the
VI-Prune and VS-Block transformations apply; (c) The transformed code after VI-Prune which has
used the pruneSet to add low-level transformation hints such as peeling iterations 0 and 3; (d) The
final code where hinted low-level transformations are applied (peeling is only shown for iteration
zero).

solver is internally represented using a domain-specific abstract syntax tree (AST)
which is annotated with potential transformations. The annotated information is
used to apply domain-specific optimizations while lowering the code for the numerical
method. Code lowering refers to rewriting code with more details from provided high-
level information. In addition, the lowered code is annotated with additional low-level
transformations (such as unrolling) when applicable based on domain- and matrix-
specific information. Finally, the annotated code is further lowered to apply low-level
optimizations and output to C source code.

3.2.2 Symbolic Inspector

Different numerical algorithms can make use of symbolic information in different ways.
Prior work has described run-time graph traversal strategies for various numerical
methods [142, 112, 33, 37]. The compile-time inspectors in Sympiler are based on
these strategies. For each class of numerical algorithms with the same symbolic
analysis approach, Sympiler uses a specific symbolic inspector to obtain information
about the sparsity structure of the input matrix and stores it in an algorithm-specific
way to be used in the transformation stages.

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 18

1 for(I1){
2 .
3 .
4 for(Ik < m) {
5 .
6 .
7 for(In(Ik, ..., In−1)) {
8 a[idx(I1,...,Ik,...,In)];
9 }

10 }
11 }

1 for(I1) {
2 .
3 .
4 for(Ip < pruneSetSize) {
5 I′k = pruneSet[Ip];
6 .
7 .
8 for(In(I′k, ..., In−1)) {
9 a[idx(I1,...,I′k,...,In)];

10 }
11 }
12 }

(a) Before (b) After
Variable Iteration Space Pruning, loop[k].VI-Prune(pruneSet,pruneSetSize)

1 for(I) {
2 for(J) {
3 B[idx1(I,J)] op1= a[idx2(I,J)];
4 }
5 }

1 for(b < blockSetSize) {
2 for(J1 < blockSet[b].x) {
3 for(J2 < blockSet[b].y) {
4 B[idx1(b,J1,J2)] op1 = A[idx2(b, J1, J2)];
5 }
6 }
7 }

(c) Before (d) After
2D Variable-Sized Blocking, loop[I].VS-Block(blockSet,blockSetSize)

Figure 3.3: The inspector-guided transformations. Top: The loop over Ik with iteration space m
in (a) transforms to a loop over Ip with iteration space pruneSetSize in (b). Any use of the original
loop index Ik is replaced with its corresponding value from pruneSet i.e., I ′k. Bottom: The two
nested loops in (c) are transformed into loops over variable-sized blocks in (d).

We classify symbolic inspectors based on the numerical method as well as the
transformations enabled by the obtained information. For each combination of algo-
rithm and transformation, the symbolic inspector creates an inspection graph from
the given sparsity pattern and traverses it during inspection using a specific inspec-
tion strategy. By running the inspector on the inspection graph inspection sets are
generated. Inspection sets are used to guide transformations in Sympiler.

For our motivating example, triangular solve, the reach-set can be used to prune
loop iterations that perform work made unnecessary due to the sparsity of the matrix
or the right hand side. In this case, the inspection set is the reach-set and the
inspection strategy is to perform a depth-first search over the inspection graph, which
is the directed dependency graph DGL of the triangular matrix. For the example
linear system shown in Figure 3.1, the symbolic inspector generates the reach-set {6,
1, 7, 8, 9, 10}.

3.2.3 Inspector-guided Transformations

The initial lowered code along with inspection sets obtained by the symbolic inspec-
tor go through a series of passes that further transform the code. Sympiler currently

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 19

supports two transformations guided by inspection sets, namely Variable Iteration
Space Pruning and 2D Variable-Sized Blocking, which can be applied independently
or jointly depending on the input sparsity. As shown in Figure 3.2b, the code is
internally annotated with information showing where inspector-guided transforma-
tions may be applied. The symbolic inspector provides the required information to
the transformation phases, which decide whether to transform the code based on the
inspection sets. Given the inspection set and annotated code, transformations occur
as illustrated in Figure 3.3.

Variable Iteration Space Pruning

Variable Iteration Space Pruning (VI-Prune) prunes the iteration space of a loop using
information about the sparse computation. The iteration space for sparse codes can
be considerably smaller than that of dense codes, since only iterations with nonzeros
are computed. The inspection stage of Sympiler generates an inspection set that
enables transforming the unoptimized sparse code to a code with a reduced iteration
space.

Given this inspection set, VI-Prune is applied at a particular loop-level to trans-
form the code from Figure 3.3a to Figure 3.3b. In the figure, the transformation is
applied to the kth loop nest in line 4. In the transformed code the iteration space
is pruned to pruneSetSize, which is the inspection set size. In addition to the new
loop, all references to Ik are replaced by its corresponding value from the inspection
set, pruneSet[Ip]. Furthermore, the transformation phase uses the inspection set
information to annotate certain loops with low-level optimizations. These low-level
transformations are applied in subsequent stages of code generation and are guided
by tunable thresholds to generate faster code.

In our running triangular solve example, the VI-Prune transformation elides un-
necessary iterations due to zeros in the right hand side. In addition, depending on
the number of iterations the loops will run (which is known thanks to the symbolic
inspector), loops are annotated with directives to unroll and/or vectorize during code
generation.

2D Variable-Sized Blocking

2D Variable-Sized Blocking (VS-Block) converts a sparse code to a set of non-uniform
dense sub-kernels. In contrast to the conventional approach of blocking/tiling dense
codes, where the input and computations are blocked into smaller uniform sub-kernels,
the unstructured computations and inputs in sparse kernels make blocking optimiza-
tions challenging. The symbolic inspector identifies sub-kernels with similar structure

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 20

in the sparse matrix methods and sparse inputs to find “blockable” sets that are not
necessarily of the same size or consecutively located. These blocks are similar to the
concept of supernodes [111] in sparse libraries. VS-Block must deal with a number of
challenges:

• The block sizes are variable in a sparse kernel.

• Because of using compressed storage formats, the block elements may not be in
consecutive memory locations.

• The type of numerical method used may have to change after applying this
transformation. For example, to apply VS-Block to sparse Cholesky code, a
dense Cholesky factorization has to be applied to the diagonal segment of the
blocks and the off-diagonal segments need to be updated with dense triangular
solves.

To address the first challenge, the symbolic inspector provides an inspection set
which specifies the size of each block. For the second challenge, the transformed code
allocates temporary block storage and copies data as needed prior to operating on
the block. Finally, to deal with the last challenge, the synthesized loops/instructions
in the lowering phase will contain information about the block location in the ma-
trix and the correct operation is chosen for each loop/instruction when applying the
transformation. Similar to VI-Prune, VS-Block also annotates loops with low-level
transformations such as tiling for the code generation phase. By leveraging specific
information about the matrix when applying the transformation, Sympiler is able to
apply VS-Block to sparse numerical methods.

An off-diagonal version of the VS-Block transformation is shown in Figures 3.3c
and 3.3d. A new outer loop is created. This outer loop provides block information to
the inner loops using the blockSet . The inner loop in Figure 3.3c is transformed to two
nested loops (lines 2–6) that iterate over the block specified by the outer loop. In line
3 of Figure 3.3c, the vector a is operated on and the result is stored in matrix B. After
the VS-Block transformation, this vector operation is converted to a matrix-matrix
operation as shown in line 4 of Figure 3.3d. Indices J1 and J2 are used to access a
particular block in matrix A. Examples of applying VS-Block to triangular solve and
Cholesky factorization are provided in Section 3.3.

3.2.4 Enabled Conventional Low-level Transformations

While applying inspector-guided transformations, the original loop nests are trans-
formed into new loops with potentially different iteration spaces, enabling the applica-
tion of conventional low-level transformations. Based on the applied inspector-guided

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 21

transformations as well as the properties of the input matrix and the right-hand side
vectors, the code is annotated with transformation directives. An example of these
annotations is shown in Figure 3.2c where loop peeling is annotated within the VI-
Pruned code. To decide when to add these annotations, the inspector-guided trans-
formations use sparsity-related parameters such as the average block size. Following
lists sources that enable Low-level transformations:

1. Symbolic information provides dependency information at compile time allowing
Sympiler to apply more transformations such as peeling based on the reach-set
in Figure 3.1;

2. Inspector-guided transformations remove some of the indirect memory accesses
and annotate the code with potential conventional transformations;

3. Sparsity-specific code generation provides Sympiler with information such as
loop boundaries at compile time. A a result, several customized transformations
are applied such as vectorization of loops with iteration counts greater than a
threshold.

Figure 3.1e demonstrates the process in which iterations in the triangular solve
code after VI-Prune are peeled. In this example, the inspection set used for VI-Prune
is the reach-set {1, 6, 8, 9, 10}. Because the reach-set is created in topological order,
iteration ordering dependencies are met and thus code correctness is guaranteed after
loop peeling. As shown in Figure 3.2c, the transformed code after VI-Prune is anno-
tated with the enabled peeling transformation based on the number of nonzeros in the
columns (the column count). The two selected iterations with column count greater
than two are peeled. The peeled iterations are either replaced with a specialized
kernel or another transformation such as vectorization is applied to them.

3.3 Case Studies

Table 3.1: Inspection and transformation elements in Sympiler for triangular solve. DG: dependency
graph, SP (RHS): sparsity patterns of the right-hand side vector, DFS: depth-first search, unroll:
loop unrolling, peel: loop peeling, dist: loop distribution, tile: loop tiling.

Transformations Triangular Solve
Inspection
Graph

Inspection
Strategy

Inspection
Set

Enabled Low-level

VI-Prune DG +
SP(RHS)

DFS Prune-set
(reach-set)

dist, unroll, peel,
vectorization,

VS-Block DG Node
equivalence

Block-set
(supernodes)

tile, unroll, peel,
vectorization

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 22

Table 3.2: Inspection and transformation elements in Sympiler for Cholesky factorization. SP(A):
sparsity patterns of the coefficient A, SP (Lj): sparsity patterns of the jthrow of L, unroll: loop
unrolling, peel: loop peeling, dist: loop distribution, tile: loop tiling.

Transformations Cholesky Factorization
Inspection
Graph

Inspection
Strategy

Inspection
Set

Enabled Low-level

VI-Prune etree +
SP(A)

Single-node
up-traversal

Prune-set
(SP(Lj))

dist, unroll, peel,
vectorization

VS-Block etree +
ColCount(L)

Up-traversal Block-set
(supernodes)

tile, unroll, peel,
vectorization

Sympiler currently supports two important sparse matrix computations, namely
the triangular solve and Cholesky factorization. This section discusses some of the
graph theory and algorithms used in Sympiler’s symbolic inspector to extract inspec-
tion sets for these two matrix methods. The run-time complexity of the symbolic
inspector is also presented to evaluate inspection overheads. Finally, we demonstrate
the process of applying the VI-Prune and VS-Block transformations using the inspec-
tion sets. Sympiler’s extension to other matrix methods is also discussed.

Tables 3.1 and 3.2 show a classification of the inspection graphs, inspection strate-
gies, and resulting inspection sets for the two studied numerical algorithms in Sympiler.
As shown in both Tables 3.1 and 3.2, the symbolic inspector performs a set of known
inspection methods and generates sets which include symbolic information. The last
column of the Tables shows the list of low-level transformations enabled by each
inspector-guided transformation.

3.3.1 Sparse Triangular Solve

Theory: The symbolic inspector traverses the dependency graph DGL using depth-
first search (DFS) to determine the inspection set for the VI-Prune transformation,
which in this case is the reach-set from DGL and the right-hand side vector. The
graph DGL is also used to detect blocks with similar sparsity patterns, also known
as supernodes, in sparse triangular solve. The block-set, which contains columns of
L grouped into supernodes, is identified by inspecting DGL using a node equivalence
method. The node equivalence algorithm initially assumes nodes vi and vj are equiv-
alent and compares their outgoing edges. If the outgoing edges point to the same
destination nodes then the two nodes are equal and are merged.

Inspector-guided Transformations: Using the reach-set, VI-Prune limits the
iteration space of the loops in triangular solve to only those that operate on relevant
nonzeros. The VS-Block transformation changes the loops in triangular solve to apply
blocking as shown in Figure 3.2b. The diagonal block of each column-block, which

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 23

1 • • •
2 • • • •
• 3 •

4 • • •
• 5 •

• • 6 • •
• • • 7 •
• • • 8 •
• • • 9 •

• • • • 10

A

−→

1
2
• 3

4
• 5

• • • • 6
• • • 7
• • • • • 8
• • • • • • • 9

• • • • 10

L T

1

2

3

4

5
6

7

8

9

10

1

Figure 3.4: An example matrix A and its L factor from Cholesky factorization. The corresponding
elimination tree (T) of A is also shown. Nodes in T and columns in L highlighted with the same
color belong to the same supernode. The red nonzeros in L are fill-ins.

1 for(column j = 0 to n){

2 f = A(:,j)

3 PruneSet = The sparsity pattern of row j

4 for(every row r in PruneSet){ // Update

5 f -= L(j:n,r) * L(j,r);

6 }

7 L(k,k) = sqrt(f(k)); // Diagonal

8 for(off-diagonal elements in f){ // Off-diagonal

9 L(k+1:n,k) = f(k+1:n) / L(k,k);

10 }

11 }

Figure 3.5: Pseudo-code of left-looking Cholesky.

is a small triangular solve, is solved first and its solution replaces the off-diagonal
segment of the matrix.

Symbolic Inspection: The time complexity of DFS on graphDGL is proportional
to the number of edges traversed and the number of nonzeros in the RHS of the
system. The time complexity for the node equivalence algorithm is proportional to
the number of nonzeros in L. We provide overheads for these methods for the tested
matrices in Section 3.4.3.

3.3.2 Cholesky Factorization

Cholesky factorization is commonly used in direct solvers and is used to precondition
iterative solvers. The algorithm factors a Hermitian positive definite matrix A into
LLT , where matrix L is a lower triangular matrix. Figure 3.4 shows an example
matrix A and the corresponding L matrix after factorization.

Theory: The elimination tree (etree) [40] is one of the most important graph
structures used in the symbolic analysis of sparse factorization algorithms. Figure 3.4
shows the corresponding elimination tree for factorizing matrix A. The etree of A
is a spanning tree of G+(A) satisfying parent[j] = min{i > j : Lij 6= 0} where

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 24

G+(A) is the graph of L + LT . The filled graph or G+(A) results at the end of the
elimination process and includes all edges of the original matrix A as well as the fill-in
edges. Detailed discussions of the theory behind the elimination tree, the elimination
process, and the filled graph can be found in [37, 142].

Figure 3.5 shows the pseudo-code of the left-looking sparse Cholesky, which is
performed in two phases of update (lines 3–6) and column factorization (lines 7–10).
The update phase gathers the contributions from the already factorized columns on
the left. The column factorization phase calculates the square root of the diagonal
element and applies it to the off-diagonal elements.

To find the prune-set that enables the VI-Prune transformation, the row sparsity
pattern of L has to be computed. Figure 3.5 shows how this information is used to
prune the iteration space of the update phase in the Cholesky algorithm. Since L
is stored in column compressed format, the etree and the sparsity pattern of A are
used to determine the L row sparsity pattern. A non-optimal method for finding
the row sparsity pattern of row i in L is that for each nonzero Aij the etree of A is
traversed upwards from node j until node i is reached or a marked node is found.
The row-count of i is the visited nodes in this subtree. Sympiler uses a similar but
more optimized approach from [37] to find row sparsity patterns.

Supernodes used in VS-Block for Cholesky are found with the L sparsity pattern
and the etree. The sparsity pattern of L is different from A because of fill-ins created
during factorization. However, the elimination tree T along with the sparsity pattern
of A are used to find the sparsity pattern of L prior to factorization. As a result,
memory for L is allocated ahead of time to eliminate the need for dynamic memory
allocation. To create the supernodes, the fill-in pattern should be first determined.
Equation (3.1) is based on a theorem from [61] and computes the sparsity pattern of
column j in L, Lj, where T (s) is the parent of node s in T and “\" means exclusion.
The theorem states that the nonzero pattern of Lj is the union of the nonzero patterns
of the children of j in the etree and the nonzero pattern of column j in A.

Lj = Aj
⋃
{j}

⋃ ⋃
j=T (s)

Ls\{s}

 (3.1)

When the sparsity pattern of L is obtained, the following rule is used to merge columns
to create basic supernodes: when the number of nonzeros in two adjacent columns j
and j − 1, regardless of the diagonal entry in j − 1 are equal and j − 1 is the only
child of j in T , the two columns are merged.

Inspector-guided transformations: The VI-Prune transformation is applied
to the update phase of Cholesky. With the row sparsity pattern information when

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 25

factorizing column i, Sympiler only iterates over dependent columns instead of all
columns smaller than i. The VS-Block transformation can be applied to both the
update and the column factorization phases. Therefore, the outer loop in the Cholesky
algorithm in Figure 3.5 is converted to a new loop that iterates over the block-set. All
references to the column j in the inner loops will be changed to the blockSet[j]. For
the diagonal part of the column factorization, a dense Cholesky needs to be computed
instead of the square root in the non-supernodal version. The resulting factor from
the diagonal elements applies to the off-diagonal rows through a sequence of dense
triangular solves. VS-Block also converts the update phase from vector operations to
matrix operations.

Symbolic Inspection: The computational complexity for building the etree in
sympiler is nearly O(|A|). The run-time complexity for finding the sparsity pattern of
row i is proportional to the number of nonzeros in row i of A. The method is executed
for all columns which results in a run-time of nearly O(|A|).The inspection overhead
for finding the block-set for VS-Block includes the sparsity detection which is done
in nearly O(|A|+ 2n) and the supernode detection which has a run-time complexity
of O(n) [37].

3.3.3 Other Matrix Methods

The inspection graphs and inspection strategies supported in the current version of
Sympiler are used in a large class of commonly-used sparse matrix computations. The
applications of the elimination tree go beyond the Cholesky factorization method and
extend to some of the most commonly used sparse matrix routines in scientific appli-
cations such as LU, QR, orthogonal factorization methods [116], and incomplete and
factorized sparse approximate inverse preconditioner computations [97]. Inspection
of the dependency graph and proposed inspection strategies that extract reach-sets
and supernodes from the dependency graph are the fundamental symbolic analyses
required to optimize algorithms such as rank update/downdate methods [38], incom-
plete LU(0) [131], incomplete Cholesky preconditioners, and up-looking implementa-
tions of factorization algorithms. Thus, Sympiler with the current set of symbolic in-
spectors can be made to support many of these matrix methods. However, Sympiler’s
decoupling technique is not applicable to methods that change the sparsity pattern
during computation such as numerical methods with pivoting. Numerical methods
that use sparsity-preserving pivoting techniques such as Bunch-Kaufman [154] or
static pivoting [92] can still benefit from Sympiler. We plan to extend to an even
larger class of matrix methods and to support more optimization techniques.

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 26

Table 3.3: Matrix set: The matrices are sorted based on the number of nonzeros in the original
matrix; nnz refers to number of nonzeros, n is the rank of the matrix.

Problem ID Name n (103) nnz (A) (106)
1 cbuckle 13.7 0.677
2 Pres_Poisson 14.8 0.716
3 gyro 17.4 1.02
4 gyro_k 17.4 1.02
5 Dubcova2 65.0 1.03
6 msc23052 23.1 1.14
7 thermomech_dM 204 1.42
8 Dubcova3 147 3.64
9 parabolic_fem 526 3.67
10 ecology2 1000 5.00
11 tmt_sym 727 5.08

3.4 Experimental Results

We evaluate Sympiler by comparing the performance to two state-of-the-art libraries,
namely Eigen [79] and CHOLMOD [26], for the Cholesky factorization method and
the sparse triangular solve algorithm. Section 3.4.1 discusses the experimental setup
and experimental methodology. In Section 3.4.2 we demonstrate that the trans-
formations enabled by Sympiler generate highly-optimized codes for sparse matrix
algorithms compared to state-of-the-art libraries. Although symbolic analysis is per-
formed only once at compile time for a fixed sparsity pattern in Sympiler, we analyze
the cost of the symbolic inspector in Section 3.4.3 and compare it with symbolic costs
in Eigen and CHOLMOD.

3.4.1 Methodology

We selected a set of symmetric positive definite matrices from [41], which are listed in
Table 3.3. The matrices originate from different domains and vary in size. All matrices
have real numbers and are in double precision. The testbed architecture is Haswell-
E as described in Table 2.1 with turbo-boost disabled. OpenBLAS.0.2.19 [198] is
used for dense BLAS (Basic Linear Algebra Subprogram) routines when needed. All
Sympiler-generated codes are compiled with GCC v.5.4.0 using the -O3 option. Each
experiment is executed 5 times and the median is reported.

We compare the performance of the Sympiler-generated code with CHOLMOD [26]
as a specialized library for Cholesky factorization and with Eigen [79] as a general nu-
merical library. CHOLMOD provides one of the fastest implementations of Cholesky
factorization on single-core architectures [76]. Eigen supports a wide range of sparse
and dense operations including sparse triangular solve and Cholesky. Thus, Cholesky
factorization results are compared with both Eigen and CHOLMOD while results for

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 27

1 2 3 4 5 6 7 8 9 10 11

Tr
ia

ng
ul

ar
 S

ol
ve

 G
FL

O
P/

s

Sympiler: VS-Block

Sympiler: VS-Block+VI-Prune+Low-Level
Eigen

Sympiler: VS-Block+VI-Prune

1

2

Figure 3.6: Sympiler’s performance compared to Eigen for triangular solve. The stacked-bars show
the performance of the Sympiler (numeric) code with VS-Block and VI-Prune. The effects of VS-
Block, VI-Prune, and low-level transformations on Sympiler’s performance are shown separately.

triangular solve are compared to Eigen. Both libraries are installed and executed
using the recommended default configuration. For the Cholesky factorization both
libraries support the more commonly used left-looking (supernodal) algorithm which
is also the algorithm used by Sympiler. Sympiler applies one or both of the inspector-
guided transformations as well as some of the enabled low-level transformations. For
low-level transformations, Sympiler currently supports unrolling, scalar replacement,
and loop distribution. For direct comparison of different implementations, a constant
floating point operation (FLOP) count is used across all implementations.

3.4.2 Performance of Generated Code

This section shows how the combination of the introduced transformations and the
decoupling strategy enable Sympiler to outperform two state-of-the-art libraries for
sparse Cholesky and sparse triangular solve.
Triangular solve: Figure 3.6 shows the performance of Sympiler-generated code
compared to the Eigen library for a sparse triangular solve with a sparse RHS. The
nonzero fill-in of the RHS in our experiments is selected to be less than 5%. The
sparse triangular system solver is often used as a sub-kernel in algorithms such as
left-looking LU [37] and Cholesky rank update methods [38] or as a solver after
matrix factorizations. Thus, typically the sparsity of the RHS in sparse triangular
systems is close to the sparsity of the columns of a sparse matrix. For the tested
problems, the number of nonzeros for all columns of L is less than 5%.

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 28

The average improvement of Sympiler-generated code, which we refer to as Sympiler
(numeric), over the Eigen library is 1.49×. Eigen implements the approach demon-
strated in Figure 3.1c, where symbolic analysis is not decoupled from the numerical
code. However, the Sympiler-generated code only manipulates numerical values which
leads to higher performance. Figure 3.6 also shows the effect of each transformation
on the overall performance of the Sympiler-generated code. In the current version of
Sympiler the symbolic inspector is designed to generate sets so that VS-Block can
be applied before VI-Prune. Our experiments show that this ordering often leads to
better performance mainly because Sympiler supports supernodes with a full diagonal
block. As support for more transformations are added to Sympiler, we will enable
it to automatically decide the best transformation ordering. Whenever applicable,
vectorization and peeling transformations are applied after VS-Block and VI-Prune.
Peeling leads to higher performance if applied after VS-Block where iterations re-
lated to single-column supernodes are peeled. Vectorization is always applied after
VS-Block and does not improve performance if only VI-Prune is applied.

Matrices 3, 4, 5, and 7 do not benefit from the VS-Block transformation so their
Sympiler run-times in Figure 3.6 are only for VI-Prune. Since small supernodes often
do not lead to better performance, Sympiler does not apply the VS-Block transfor-
mation if the average size of the participating supernodes is smaller than a threshold.
This parameter is currently hand-tuned and is set to 160. VS-Block is not applied
to matrices 3, 4, 5, and 7 since the average supernode size is too small and thus
does not improve performance. Also, since these matrices have a small column count
vectorization does not payoff.
Cholesky: We compare the numerical manipulation code of Eigen and CHOLMOD
for Cholesky factorization with the Sympiler-generated code. The results for CHOLMOD
and Eigen in Figure 3.7 refer to the numerical code performance in floating point op-
erations per second (FLOP/s). Eigen and CHOLMOD both execute parts of the
symbolic analysis only once if the user explicitly indicates that the same sparse ma-
trix is used for subsequent executions. However, even with such an input from the
user, none of the libraries fully decouple the symbolic information from the numerical
code. This is because they cannot afford to have a separate implementation for each
sparsity pattern and also do not implement sparsity-specific optimizations. For fair-
ness, when using Eigen and CHOLMOD we explicitly tell the library that the sparsity
is fixed and thus report only the time related to the library’s numerical code (which
still contains some symbolic analysis).

As shown in Figure 3.7, for Cholesky factorization Sympiler performs up to 1.3×,
2.3×, and 6.3× better than CHOLMOD with node amalgamation [50], CHOLMOD

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 29

1 2 3 4 5 6 7 8 9 10 11

5

10

Ch
ol

es
ky

 G
FL

O
P/

s

Sympiler: VS-Block
Sympiler: VS-Block+Low-Level

Eigen (Numeric)
CHOLMOD (Numeric)
CHOLMOD-A (Numeric)

Sympiler-A: VS-Block+Low-Level

Figure 3.7: The performance of Sympiler (numeric) for Cholesky compared to CHOLMOD (numeric)
and Eigen (numeric). The stacked-bar shows the performance of the Sympiler-generated code. The
effect of VS-Block and low-level transformations are shown separately. The VI-Prune transformation
is already applied to the baseline code so it is not shown here. Sympiler-A and CHOLMOD-A refer
to versions with node amalgamation.

without node amalgamation, and Eigen respectively. Eigen uses the left-looking non-
supernodal algorithm and thus its performance does not scale well with large matrices.
CHOLMOD benefits from supernodes and performs well for large matrices with large
supernodes. However, CHOLMOD does not perform well for some small matrices and
large matrices with small supernodes. Node amalgamation merges small supernodes
to increase their size for better performance and is implemented in both CHOLMOD
and Sympiler. Sympiler provides the highest performance for almost all tested matrix
types which demonstrates the effectiveness of sparsity-specific code generation.

The application of kernel-specific and aggressive optimizations when generating
code for dense sub-kernels enables Sympiler to generate fast code for any sparsity
pattern. Since BLAS routines are not well-optimized for small dense kernels they
often do not perform well for the small blocks produced by applying VS-Block to
sparse codes [163]. Therefore, libraries such as CHOLMOD do not perform well for
matrices with small supernodes. Sympiler has the luxury to generate code for its dense
sub-kernels; instead of being handicapped by the performance of BLAS routines, it
generates specialized and highly-efficient codes for small dense sub-kernels. If the
average column-count for a matrix is above a tuned threshold, Sympiler will call
BLAS routines [198] instead. Since the column-count directly specifies the number

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 30

Sympiler (Numeric)

Eigen
Sympiler (Symbolic)

4 5 621 7 8 9 103 11

0.5

1.0

1.5

2.0

Tr
ia

ng
ul

ar
 S

ol
ve

 T
im

e
/ (

Ei
ge

n
Ti

m
e)

Figure 3.8: Sparse triangular solve symbolic+numeric time for Sympiler and Eigen’s normalized over
the Eigen time.

of dense triangular solves, which is the most important dense sub-kernel in Cholesky,
the average column-count is used to decide when to switch to BLAS routines [198].
For example, the average column-count of matrices 3, 4, 6, and 8 is less than the
column-count threshold.

Decoupling the prune-set calculation from the numerical manipulation phase also
improves the performance of the Sympiler-generated code. As discussed in subsec-
tion 3.3.2, the sparse Cholesky implementation needs the row sparsity pattern of
L. The elimination tree of A and the upper triangular part of A are both used in
CHOLMOD and Eigen to find the row sparsity pattern. Since A is symmetric with
only the lower part stored, both libraries compute the transpose of A in the numeri-
cal code to access the upper triangular elements. Through fully decoupling symbolic
analysis from the numerical code, Sympiler has the L row sparsity information in the
prune-set ahead of time. Therefore, both the reach function and the matrix transpose
operations are removed from the numeric code.

3.4.3 Symbolic Analysis Time

All symbolic analysis is performed at compile time in Sympiler and its generated code
only manipulates numerical values. Since symbolic analysis is performed once for a
specific sparsity pattern, its overheads amortize with repeat executions of the numer-
ical code. However, as demonstrated in Figures 3.8 and 3.9 even if the numerical code
is executed only once, which is not common in scientific applications, the accumu-
lated symbolic+numeric time of Sympiler is close to Eigen for the triangular solve and

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 31

faster than both Eigen and CHOLMOD for Cholesky. Since Sympiler also generates
generic library code by disabling low-level transformations, the code generation cost
is discussed separately and not included in the figures.

Triangular solve: Figure 3.8 shows the time Sympiler spends to do symbolic
analysis at compile time, Sympiler (symbolic), for sparse triangular solve, normalized
over Eigen’s run-time. No symbolic time is available for Eigen since as discussed,
Eigen uses the code in Figure 3.1c for its triangular solve implementation. Sympiler’s
numeric plus symbolic time is on average 1.27× slower than the Eigen code. In
addition, depending on the matrix, code generation and compilation in Sympiler
costs between 6–197× more than the numeric solve. It is important to note that
since the sparsity structure of the matrix in triangular solve does not change in many
applications, the overhead of the symbolic inspector and compilation is only paid
once. For example, in preconditioned iterative solvers a triangular system must be
solved per iteration and often the iterative solver must execute thousands of iterations
[18, 136, 106] until convergence since the systems in scientific applications are not
necessarily well-conditioned.

Cholesky: Sparse libraries perform symbolic analysis ahead of time which can be
re-used for matching sparsity patterns and improves the performance of their numeri-
cal executions. We compare the analysis time of the libraries with Sympiler’s symbolic
inspection time. Figure 3.9 provides the symbolic analysis and numeric manipulation
times for both libraries normalized over Eigen time. The time spent by Sympiler to
perform symbolic analysis is referred to as Sympiler (symbolic). CHOLMOD (sym-
bolic) and Eigen (symbolic) refer to the partially decoupled symbolic code that is
only executed once if the user indicates that sparsity remains static. In nearly all
cases Sympiler’s accumulated time is better than the other two libraries. Code gen-
eration and compilation, which are not shown in the chart, cost at most 0.3× the
cost of numeric factorization. Also, similar to the triangular solve example, a matrix
with a fixed sparsity pattern must be factorized many times in scientific applications.
For example, in Newton-Raphson (NR) solvers for nonlinear systems of equations,
a Jacobian matrix is factorized in each iteration and the NR solvers require tens or
hundreds of iterations to converge [138, 130].

3.5 Related Work

Compilers for general languages are hampered by optimization methods that
either cannot optimize sparse codes or only apply conservative transformations that do
not lead to high performance. This is due to the indirection required to index and loop

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 32

Sympiler (Numeric)

Eigen (Numeric)
Sympiler (Symbolic)

0.5

1.0

1.5

2.0

Ch
ol

es
ky

 T
im

e
/ (

Ei
ge

n
Ti

m
e)

4 5 621 7 8 9 103 11

Eigen (Symbolic)
CHOLMOD (Numeric)
CHOLMOD (Symbolic)

Figure 3.9: Symbolic+numeric time for Sympiler, CHOLMOD, and Eigen for the Cholesky algo-
rithm. All times are normalized over the Eigen’s accumulated symbolic+numeric time.

over nonzero elements of sparse data structures. Polyhedral methods use algebraic
representations and rules to represent and transform loop nests into optimized code.
These techniques are limited when dealing with non-affine loop nests or subscripts [10,
25, 105, 145, 185, 181] common in sparse computations.

To make it possible for compilers to apply more aggressive loop and data transfor-
mations to sparse codes, recent work [186, 175, 184, 188, 187] has developed compile-
time techniques for automatically creating inspectors and executors for use at run-
time. These techniques use an inspector to analyze index arrays in sparse codes at
run-time and an executor that uses this run-time information to execute code with
specific optimizations. These inspector-executor techniques are limited in that they
only apply to sparse codes with static index arrays; such codes require the matrix
structure to not change during the computation. The aforementioned approach per-
forms well for methods such as sparse incomplete LU (0) and Gauss-Seidel methods
where additional nonzeros/fill-ins are not introduced during computation. However,
in a large class of sparse matrix methods, such as direct solvers including Cholesky,
LU, and QR decompositions, index arrays dynamically change during computation
since the algorithm itself introduces fill-ins. In addition, the indirections and de-
pendencies in sparse direct solvers are tightly coupled with the algorithm, making
it difficult to apply inspector-executor techniques. Partial evaluation techniques [99]
specialize code by using partial inputs and the program to generate code that works
well for all the remaining inputs. These methods have not been successfully extended
to support sparse matrix methods [82].

CHAPTER 3. DECOUPLING SYMBOLIC INFORMATION FOR CODE TRANSFORMATION 33

Domain-specific compilers integrate domain knowledge into the compilation
process, improving the compiler’s ability to transform and optimize specific kinds
of computations. Such an approach has been used successfully for stencil computa-
tions [147, 179, 93], signal processing [144], dense linear algebra [80, 169, 115], matrix
assembly and mesh analysis [5, 119], simulation [107, 20], and sparse operations [36,
150, 27]. Though the simulations and sparse compilers use some knowledge of matrix
structure to optimize operations, they do not build specialized matrix solvers.

Specialized Libraries are the typical approach for sparse direct solvers. These
libraries differ in (1) which numerical methods are implemented, (2) the implemen-
tation strategy or variant of the solver, (3) the type of the platform supported, and
(4) whether the algorithm is specialized for specific applications.

Each numerical method is suitable for different classes of matrices; for example,
Cholesky factorization requires the matrix be symmetric (or Hermitian) positive def-
inite. Libraries such as SuperLU [44], KLU [42], UMFPACK [33], and Eigen [79] pro-
vide optimized implementations for LU decomposition methods. The Cholesky factor-
ization is available through libraries such as Eigen [79], CSparse [37], CHOLMOD [26],
MUMPS [6, 7, 8], and PARDISO [155, 157]. QR factorization is implemented in
SPARSPAK[62, 61], SPLOOES [12], Eigen [79], and CSparse [37]. The optimiza-
tions and algorithm variants used to implement sparse matrix methods differ between
libraries. For example, LU decomposition can be implemented using multifrontal
methods [33, 81, 35], left-looking [44, 42, 51, 62], right-looking [112, 161, 49], and
up-looking [34, 162] methods. Libraries are developed to support different platforms
such as sequential implementations [37, 26, 42], shared memory [35, 45, 155], and
distributed memory [45, 7]. Finally, some libraries are designed to perform well on
matrices arising from a specific domain. For example, KLU [42] works best for circuit
simulation problems. In contrast, SuperLU-MT applies optimizations with the as-
sumption that the input matrix structure leads to large supernodes; such a strategy
is a poor fit for circuit simulation problems.

Chapter 4

Transformation and Inspection for
Parallelism

Sympiler can generate a specialized code that can effectively use vectorization by
decoupling symbolic information as discussed in Chapter 3. However, the Sympiler’s
generated code runs sequentially and does not use thread-level parallelism. Sympiler’s
inspectors use runtime information to build directed acyclic graphs (DAGs) that ex-
pose data dependence relations. The DAGs are traversed in topological order to
create a list of level sets that represent iterations that can execute in parallel; this
is known as wavefront parallelism. Synchronization between level sets ensures the
execution respects data dependencies. However, synchronization between levels in
wavefront parallelism can lead to high overheads since the number of levels increases
with the DAG critical path. For sparse kernels such as Cholesky with non-uniform
workloads, wavefront methods can additionally lead to load imbalance. This chapter
presents an inspection strategy for parallelism on multi-core architectures for sparse
matrix kernels. The proposed inspector applies a novel Load-Balanced Level Coarsen-
ing (LBC) algorithm on the data dependence graph to create well-balanced coarsened
level sets, which is called the hierarchical level set (H-Level set), mitigating load im-
balance and excessive synchronization present in wavefront parallelism. Please note
that the content of this chapter is published in the conference paper [28].

4.1 Introduction

The performance of scientific simulations relies heavily on the parallel implementa-
tions of sparse matrix computations used to solve systems of linear equations. Data
dependence information required for parallelizing sparse codes is dependent on the
matrix structure, so parallel codes may use more synchronization than necessary;

34

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 35

in addition, to achieve high parallel efficiency, the work must be evenly distributed
among cores, but this distribution also depends on the matrix structure.

Parallel sparse libraries, such as Intel’s Math Kernel Library (MKL) [192], Par-
diso [192, 156], PaStiX [86], and SuperLU [111], provide manually-optimized parallel
implementations of sparse matrix algorithms and are some of the most commonly-
used libraries in simulations using sparse matrices. These libraries differ in the kind
of numerical methods they support and use numerical-method-specific code at run-
time, during a phase called symbolic factorization, to determine data dependencies.
Based on this dependence information, different libraries implement different forms of
parallelism. For example, PaStiX uses static scheduling of a fine-grained task graph
based on empirical measurements of expected runtime for each task; in contrast, MKL
Pardiso implements a form of dynamic scheduling for its fine-grained task graph.

Previous work has extended compilers to resolve memory access patterns in sparse
codes by building runtime inspectors to examine the nonzero structure and using
executors to transform code execution and implement parallelism [187, 148, 204].
Inspectors use runtime information to build directed acyclic graphs (DAGs) that
expose data dependence relations. The DAGs are traversed in topological order to
create a list of level sets that represent iterations that can execute in parallel; this
is known as wavefront parallelism. Synchronization between level sets ensures the
execution respects data dependencies. However, synchronization between levels in
wavefront parallelism can lead to high overheads since the number of levels increases
with the DAG critical path. For sparse kernels such as Cholesky with non-uniform
workloads, wavefront methods can additionally lead to load imbalance. Frameworks
such as Sympiler [29] have demonstrated the value of creating specializations of sparse
matrix methods for exploiting specific matrix structure. However, this approach has
only been demonstrated for single-threaded implementations.

This chapter presents an inspection strategy for parallelism on multi-core archi-
tectures for sparse matrix kernels. The proposed inspector applies a novel Load-
Balanced Level Coarsening (LBC) algorithm on the data dependence graph to create
well-balanced coarsened level sets, which we call the hierarchical level set (H-Level
set), mitigating load imbalance and excessive synchronization present in wavefront
parallelism. This inspector is implemented in a framework called ParSy, which uses
information from the matrix sparsity and the numerical method to obtain data de-
pendencies. The inspector in ParSy can be used for sparse linear algebra libraries,
inspector-executor compiler methods, or from within sparsity-specific code generators
such as Sympiler.

We focus on complex sparse matrix algorithms where loop-carried data depen-

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 36

5

6

74

10

119

128

13

14

3

15

2

1

Level set = { {1, 4, 6, 9, 10}; {2, 5, 7, 11}; {3, 8, 12}; {13}; {14}; {15}; }
1

2

1

3 5

6

74

10

119

128

l-partition 1

13

14

15

l-partition 2

H-Level Set = {{{1, 2, 3, 4, 5}, {6, 7, 8}, {10, 11, 9, 12}}; {{13, 14, 15}}; }
1

(a) Assembly Tree G(V,E) (b) H-Level set of G

Figure 4.1: An example DAG, that is an assembly tree where nodes represent column blocks and
edges show the dependencies between columns during factorization, is shown in Figure 4.1a. Wave-
front methods create a level set, represented by node coloring; nodes with the same color can be
executed in parallel. Figure 4.1b shows the H-Level set created by LBC from G in Figure 4.1a.

dencies make efficient parallelization challenging, such as sparse triangular solve, as
well as matrix methods that introduce fill-ins (nonzeros) during computation, such
as Cholesky. The main contributions of this chapter include:

• A new Load-Balanced Level Coarsening (LBC) strategy that inspects sparse kernel
data dependence graphs for parallelism while maintaining an efficient trade-off be-
tween locality, load balance, and parallelism by coarsening level sets from wavefront
parallelism.

• A novel proportional cost model included in LBC that creates well-balanced parti-
tions for sparse kernels with irregular computations such as sparse Cholesky.

• Implementations of the new inspection strategies for parallelism and code trans-
formations for sparse triangular solve and Cholesky factorization, in a framework
called ParSy. For evaluation, the proposed implementations are built within the
open-source Sympiler infrastructure, but with all Sympiler optimizations disabled.
The performance of ParSy is evaluated against MKL Pardiso and PaStiX, demon-
strating that the partitioning strategy in ParSy outperforms the state-of-the-art by
1.4× on average and up to 3.1×.

4.2 ParSy Overview

ParSy consists of the H-Level inspector and code transformations to enable efficient
parallel execution for sparse matrix methods. Example input code to ParSy is shown
in Listing 4.1, where the user provides the numerical method, matrix sparsity pattern,

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 37

and additional information about the desired level of parallelism. ParSy builds a DAG
representing data dependencies in the sparse kernel for the given sparsity pattern.
Then, the H-Level inspector uses a Load-Balanced Level Coarsening algorithm to
create a schedule from the DAG of the kernel. To parallelize the original code and
take advantage of the schedule, the numerical method code must be transformed.
This section describes the H-Level inspector and discusses code transformations to
support the parallel schedule, using sparse Cholesky as an example.

1 int main() {

2 Sparse A(type(float,64),"Matrix.mtx");

3 Cholesky chol(A);

4 chol.generate_c("chol",k); }

Listing 4.1: ParSy input code

Algorithm 1: ParSy’s H-Level inspector.
Input : DAG G, k, thresh, win, agg
Output: H-LevelSet

1 [vertexCost,edgeCost] = computeCost(G)
2 [H-LevelSet]=LBC(G,vertexCost,edgeCost, k, thresh, win, agg)
3 return H-LevelSet

4.2.1 H-Level Inspector

The goal of ParSy’s inspector is to statically partition the DAG of a specific numerical
method applied to a specific sparse matrix while creating an efficient load balance with
low synchronization cost and high locality. Wavefront parallelism approaches [110,
132], typically used in code transformation frameworks to generate parallel sparse
codes, can create load imbalance and excessive synchronizations since sparse kernels
like Cholesky have imbalanced workloads for column-based and column-block-based
implementations. ParSy’s H-Level inspector resolves this issue by creating partitions
with coarser tasks while ensuring good balance between execution threads.

Algorithm 1 shows the basic outline of ParSy’s inspector. Line 2 shows the LBC
phase (see Section 4.3), where the DAG along with the number of processor cores
(k in Algorithm 1), the computational efficiency of a single core (thresh), and tuning
parameters win and agg related to balancing and coarsening of the levels, are the
inputs. The LBC algorithm uses a kernel-specific cost model for vertices and edges,
which is used for load balance. With this information the DAG is partitioned into
level-partitions (l-partitions) that partition the DAG into coarsened levels, and into
k or fewer width-partitions (w-partitions) each executed on a single core within each
l-partition.

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 38

Example. Cholesky factorization is commonly used in direct linear solvers and
to precondition iterative solvers. The algorithm factors a Hermitian positive definite
matrix A into LLT , where matrix L is a sparse lower triangular matrix. We use the
left-looking Cholesky variant. To compute the factor for a column j in L the algorithm
visits all columns i that contain a nonzero in row j of L with i < j and then applies
the contributions of columns i to column j [37]. Dependencies between each column-
computing iteration are represented by a DAG called the elimination tree (etree) [116,
142]. In an etree each node represents a column and each directed edge denotes that
the destination depends on the source. To improve the performance of sparse Cholesky
by using dense BLAS operations, columns with similar nonzero patterns are merged
to form a block or supernode of columns. Dependencies between column blocks are
represented using a modified version of the etree called the assembly tree, where nodes
represent column blocks. For Cholesky factorization, using the etree does not create
coarse enough nodes to parallelize and thus in most available software [44, 86, 158, 6]
the assembly tree is used as the baseline dependency DAG for Cholesky. Figure 4.1a
is an example assembly tree that we will use to demonstrate how ParSy creates an
H-Level set.

Wavefront parallelism techniques [187, 148] first create a topologically-ordered
level set, shown in Figure 4.1a and then execute nodes within each level in parallel.
However, this often leads to higher-than-necessary overhead, because it requires syn-
chronization between each level. Furthermore, the work per node varies depending
on the non-zero structure, often resulting in poor load balance. Our Load-Balanced
Level Coarsening (LBC) algorithm, described in Section 4.3, partitions the assembly
tree with the objective of facilitating efficient parallel execution while producing a
good balance between load and locality. Our partitioning works in two stages; the
first partitions the DAG by level to create topologically-ordered l-partitions, shown in
Figure 4.1b. In the second phase, the disjoint sub-DAGs inside each level are divided
into k or fewer equally-balanced w-partitions, where k is the number of cores. The H-
Level set improves locality compared to the wavefront approach and reduces inter-level
synchronizations from six to two for this example. Furthermore, the LBC algorithm
balances the workload of each partition by packing multiple independent sub-DAGs
into each w-partition. This packing approach is important in sparse Cholesky where
the workload for each column block differs from other blocks. Finally, each w-partition
does not communicate with any other w-partition in the same level, since each w-
partition consists of disjoint sub-DAGs.

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 39

1 H-Level:

2 for(I1){
3 .

4 .

5 .

6

7 for(In(I1)){
8 Atomic:

9 c /= a[idx(I1,...,In)]; }}

1 f o r (every l−pa r t i t i o n i) {
2 #pragma omp p a r a l l e l f o r p r i va t e (pVars)
3 f o r (every w−pa r t i t i o n j) {
4 f o r (every v ∈ HLevelSet [i] [j]) {
5 I1 = v ;
6 . . .
7 f o r (In (I1)) {
8 #pragma omp atomic
9 c /= a [idx (I1 , . . . , In)] ;}}}}}

(a) Before (b) After
Level, loop[1].HLevel(HLevelSet,pVars)

Figure 4.2: The H-Level transformation. The loop over I1 in (a) transforms into two nested loops
that iterate over the H-Level set in (b). Any use of the original loop index I1 is replaced with its
corresponding value from HLevelSet.

4.2.2 Parallel Code Transformation

To utilize the H-Level set to efficiently execute the schedule, the original code must
be transformed for parallelism. Figure 4.2 shows the general form of the H-level
transformation. The loop in line 2 of the code in Figure 4.2a is changed to lines 1–4
in the code in Figure 4.2b. After transformation, all operations and indices that use
I1, which is the index of the transformed loop, will be replaced with a proper value
from HLevelSet. The parallel pragma in line 2 ensures that all w-partitions within an
l-partition run in parallel. Note that some algorithms may require atomic pragmas;
such cases are detectable using existing analysis techniques [55].

1 H-Level:

2 for (int i=0; i<blockNo; ++i){

3 b1 = block2col[i]; b2 = block2col[i+1];

4 f = A(:,b1:b2);

5 // Update phase

6 for(block r=0 to i-1 L(i,r)!=0){
7 f-=GEMM(L(b1:n,r),transpose(L(i,r)));}
8 // Diagonal operation

9 L(b1:b2,b1:b2)=POTRF(f(b1:b2));

10 // Off-diagonal operations

11 for(off-diagonal elements in f){
12 L(b2+1:n,b1:b1) =

13 TRSM(f(b1+1:n,b1:b2),L(b1:b2,b1:b2)); } }

(a) Serial blocked left-looking Cholesky

1 for(every l-partition i){
2 #pragma omp parallel for private(f){

3 for(every w-partition j){
4 for(every v ∈ HLevelSet[i][j]){

5 int i = v;
6 b1 = block2col[i];b2 = block2col[i+1];

7 f = A(:,b1:b2);

8 for(block r=0 to i-1 L(i,r)!=0){
9 f-=GEMM(L(b1:n,r),transpose(L(i,r)));}

10 L(b1:b2,b1:b2)=POTRF(f(b1:b2));

11 for(off-diagonal elements in f){
12 L(b2+1:n,b1:b1) =

13 TRSM(f(b1+1:n,b1:b2),L(b1:b2,b1:b2)); } }}}}

14 //Specialized code for the last l-partition.
15 Cholesky_Specialized(HLevelSet[n− 1][0]);

(b) ParSy’s generated code

Figure 4.3: The application of the H-Level transformation on blocked left-looking Cholesky factor-
ization. Figure 4.3b shows the transformed version of the code in Figure 4.3a with the H-Level
transformation. The gray lines remain unchanged.

Figure 4.3 shows how the H-Level transformation modifies Cholesky factorization.
As shown, the outermost loop in line 2 of Figure 4.3a is transformed to lines 1–

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 40

5 in Figure 4.3b. Since in the left-looking Cholesky algorithm nodes do not write
to other nodes, the loop body does not change because no critical region is required.
The OpenMP pragma enables parallelism over sub-DAGs, executing dependent nodes
within the same thread, which increases locality. For the example DAG in Figure 4.1a,
the outer loop in the code of Figure 4.3b executes only one iteration, resulting in a
single synchronization, compared to the six synchronizations required by wavefront
parallelism.

The available parallelism in a sparse algorithm is not uniform and typically different
approaches for parallelism must be used to efficiently exploit the underlying parallel
architecture. For example, l-partition 1 in the partitioned DAG in Figure 4.1b benefits
from tree parallelism; however, the nodes in l-partition 2, which contains the sink
node (the node with no outgoing edges), have no tree parallelism but such nodes
can be repartitioned to increase data parallelism within their corresponding dense
computations [86]. The last iteration, which corresponds to the last partition of the
H-Level set, is peeled and optimized differently. For such nodes, ParSy enables using
parallel BLAS operations for the node; however, ParSy can be extended to support
more advanced specialization techniques such as repartitioning.

4.2.3 Implementation

We have implemented ParSy in the open-source Sympiler [29] framework. Even
though ParSy can be implemented at runtime similar to library-based approaches,
we build on top of Sympiler to ease implementation and for potential future benefits
of integrating ParSy with sparsity-specific code generation from Sympiler. Because
of using Sympiler, the inspectors in ParSy are executed at compile time and their
information is used to automatically transform the code.

To implement ParSy, the inputs to Sympiler are extended to provide information
that the H-Level inspector requires. The H-Level inspector and H-Level transforma-
tion are implemented as additional stages in the inspection and transformation phases
of Sympiler respectively. The inspector creates the data dependence graph based on
the input numerical method and the sparsity pattern. ParSy uses the created data
dependence graph and creates a coarsened level set that will later be used as an input
to the generated code. Sympiler’s low-level transformations are disabled in ParSy, so
we do not specialize code for a specific sparsity pattern. This chapter considers solely
the impact of the H-Level inspector.

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 41

4.3 Load-Balanced Level Coarsening (LBC)

ParSy utilizes the Load-Balanced Level Coarsening (LBC) algorithm to partition the
DAG that describes the dependencies of the computation. LBC statically creates a
set of partitions that minimize load imbalance and communication while attempt-
ing to maximize available parallelism and locality. In this section, we describe the
partitioning produced by LBC, its associated constraints, and the algorithm that pro-
duces this partitioning. Finally, we show the proportional cost model used by LBC
to estimate load costs for each partition.

4.3.1 Problem Definition

The goal of Load-Balanced Level Coarsening is to find a set of l-partitions, and within
each l-partition, to find a set of disjoint w-partitions with as balanced cost as possible.
For improved performance, these partitions adhere to additional constraints to reduce
synchronization between threads and maintain load balance. Additionally, there are
objective functions for minimizing communication between threads and the number
of synchronizations between levels. To describe the partitioning and constraints, we
use the following notation.

Definitions. G(V,E) denotes the input DAG with vertex set V and edge set E,
along with a nonnegative integer weight d(v) for each vertex v ∈ V and nonnegative
integer weight c(e) for each edge e ∈ E. The level of a node level(v) is the length
of the longest path between the node v and a source node, which is a node with no
incoming edge. The level of the sink node is the length of the critical path P ; in the
case of multiple sink nodes, P is the maximal level among all sink nodes.

Definition 1: Given DAG G and an integer number of partitions n > 1, the
LBC algorithm produces n l-partitions of V with sets of nodes (Vl1 , ..., Vln) such that
Vl1 ∪ ... ∪ Vln = V and ∀i 6= j, Vli ∩ Vlj = ∅. Each l-partition li = [lbi..ubi] is
represented by a lower bound and upper bound on the level, and contains all nodes
with levels between the two bounds. In addition, ∪ni=1li = [1..P]. The induced DAG
for l-partition li is represented with Glbi:ubi .

Definition 2: Given the number of threads k > 1, for each set of nodes Vli , the
LBC algorithm produces mi ≤ k w-partitions (Vli,w1 , ..., Vli,wm) such that Vli,w1 ∪ ...∪
Vli,wmi

= Vli and ∀i, j, p, q, where i 6= j or p 6= q, Vli,wp ∩ Vlj ,wq = ∅.
Definition 3: Within a partition, the number of connected components is the num-

ber of disjoint sub-DAGs in the partition, which is shown by comp(Vli,wp) for a par-
tition Vli,wp .

In summary, the partitioning produced by LBC creates l-partitions, and within

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 42

each l-partition i, it creates up to k disjoint w-partitions. Each node in the DAG
belongs to one l-partition and one w-partition. Note that some l-partitions, those
with only one connected component, will only contain one w-partition (see Vl2 in
Figure 4.1). Some of the values for that example are as follows: n = 2, Vl1 =

{{1, 2, 3, 4, 5}, {6, 7, 8}, {10, 11, 9, 12}}, Vl1,w2 = {6, 7, 8}, and Vl2 = {{13, 14, 15}}.
The number of w-partitions for Vl1 is m1 = 3, and m2 = 1 for Vl2 . The number
of connected components in l-partition Vli is shown with comp(Vli). For example,
comp(Vl1,w1) is 2, comp(Vl1,w2) is 1, etc.

Constraints. The space-partition constraint ensures that threads executing itera-
tions in different w-partitions need not synchronize amongst each other. The name of
this constraint comes from affine partitioning [114], where the goal of the constraint
is the same; however, the constraint definition is different here since the input is a
DAG. If E(Vli,wp , Vli,wq) is the set of cut edges between two partitions Vli,wp and Vli,wq ,
the space-partition constraint is:

∀1 ≤ i ≤ n ∧ (1 ≤ p, q ≤ mi), E(Vli,wp , Vli,wq) = ∅ (4.1)

The w-partitions within each Vlj must have no edges in common, which is the con-
straint expressed in Equation (4.1).

The load balance constraint ensures that the w-partitions within Vli are balanced up
to a threshold. Assuming ε ∈ R with ε ≥ 0 is a given input threshold for determining
the maximum imbalance, the load balance constraint is:

∀i, 1 ≤ i ≤ n ∧ comp(Vli) > 1 ∧ ∀1 ≤ p ∈ mi,

cost(Vli,wp) ≤ (1 + ε)dcost(Vli)/mie (4.2)

where cost(Vli,wp) =
∑

v∈Vli,wp
d(v) and cost(Vli) =

∑
p∈1..mi

cost(Vli,wp). As shown in
Equation 4.2, the load balance constraint does not apply to an l-partition with only
a single w-partition, because creating load balance for one component is not feasi-
ble. The constraint ensures that the cost of executing an l-partition Vli is uniformly
distributed to w-partitions Vli,wp so the maximum difference is less than 2ε.

Objective. The objective function for LBC is to reduce the critical path of the
partitioned DAG, also known as quotient graph QG, as well as the communication
cost between the partitions. QG is the DAG induced by the partitioning Vlj ,wi

, where
each vertex in QG is a partition and edges Eq exist only if an edge exists such that
the two endpoints are in separate partitions. The critical path minimization objective
is to minimize PQG

. The communication cost objective is to minimize
∑

e∈Eq
c(e),

where c is the cost associated with each edge of QG. Since no edges exist between

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 43

w-partitions, this objective minimizes the edge costs between l-partitions.

4.3.2 LBC Algorithm

As shown in Algorithm 4.1, the inputs to LBC are a DAG annotated with a cost model
for both vertices and edges, the number of requested w-partitions, an architecture-
related threshold, and tuning parameters win and agg. Section 4.3.3 illustrates a cost
model used in LBC. Since optimizing for both l-partitions and w-partitions is complex,
our algorithm uses heuristics for speed and simplicity. A major simplification is to
separate the two kinds of partitioning so that the algorithm, shown in Algorithm 2,
proceeds in three stages: (1) l-partitioning, (2) w-partitioning and, optionally, (3)
reordering.
l-partitioning. This step finds l as defined in Section 4.3.1. The algorithm

begins by finding the first partition, which contains the source nodes of the DAG;
note that the upper and lower bounds for each partition represent the range of levels
(the distance from the source nodes) for the vertices in the partition. In line 7,
the algorithm finds the largest level (closest to the sink node of the DAG) containing
enough disjoint sub-DAGs to result in approximately k w-partitions. Then, in lines 9–
16 the algorithm searches through adjacent candidates up to win levels away for where
to cut the partition, by finding the one that results in the most load-balanced w-
partitions (see Section 4.3.3). Once the first l-partition is set, the loop in line 17 groups
the remaining levels into l-partitions with agg levels per partition. Tuning parameters
win and agg denote the search window for a load-balanced cut and coarseness of
the remaining levels respectively. Finally, the algorithm builds the last partition,
containing the sink node, in line 20.
w-partitioning. In this step, each l-partition, which is a collection of sub-DAGs

with different costs, is divided into w-partitions such that the cost of each partition
is balanced. To find the sub-DAGs, we do a sequence of depth-first searches from
all source nodes in the l-partition. The sub-DAGs that intersect are merged. We
then use a variant of the first-fit decreasing bin packing approach [98, 31] to find
w-partitions with near-equal overall cost. Lines 21–26 in Algorithm 2 produce w-
partitions of size k if there are enough components; otherwise, the number of bins is
set to comp(Gg)/2. Once the balanced components are found, we use a modified
breadth-first search (BFS) to store the nodes of w-partitions in a precedence order.
The modified BFS algorithm starts from the source nodes of a w-partition and places
the nodes in a queue. Every node that is removed from the queue is placed in the
final H-Level set and then the incoming degree of its adjacent nodes is decremented.
The algorithm ends when the queue is empty.

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 44

Algorithm 2: Load-Balanced Level Coarsening
Input : G, d, c k, thresh, win, agg
Output : Vlj ,wi , lj
/* For small DAG, use a single partition */

1 if G ≤ thresh then
2 Vl0 = G
3 l0.lb = 0 l0.ub = G.P
4 return {V ,l}
5 end

/* l-partitioning, starting from source nodes */
6 l0.lb = 0

/* Find closest level to the sink node with enough sub-DAG */
7 linitCut = max({l|comp(G0:l) ≥ k})
8 ε=∞

/* Explore cuts to find good load balance */
9 for i=linitCut; i> linitCut-win; i-=1 do

10 CurCost(:) = BinPack(G0:i,d,k)
11 maximalDiff = max(CurCost) - min(CurCost)
12 if maximalDiff < ε then
13 ε = maximalDiff
14 l0.ub = i

15 end
16 end

/* Group rest of levels into l-partitions */
17 for i=l0.ub; i < G.P − agg; i+=agg do
18 l.append([i, i+ agg])
19 end

/* Final partition includes the sink node */
20 l.append([ln.ub,G.P])

/* w-partitioning */
21 for g ∈ l do
22 if comp(Gg) > 1 then
23 parts = comp(Gg) > k ? k : comp(Gg)/2
24 Vg= BinPack(Gg,d,parts)
25 end
26 end

/* Reorder w-partitions */
27 for i=n; i> 0; i-=1 do
28 for j=0; j< mi; j+=1 do
29 Q = {∃q ∈ child(Vli,wj)|c(eqVli,wj

) is max }
30 swap(Vli+1,wQ ,Vli+1,wj)
31 end
32 end
33 return {V ,l}

Because our w-partitioning algorithm merges sub-DAGs that intersect, it is pos-
sible that fewer than k components are found due to the intersection. However, we
have not encountered this case in practice, and in such cases it is possible to modify
the algorithm to perform w-partitioning for multiple candidate l-partitionings to find
one where the most subcomponents exist.

Reordering. Optionally, the w-partitions in each l-partition can be reordered to
further enhance locality. This phase reorders the computation within each w-partition

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 45

to optimize the communication cost objective. The goal is to ensure that a w-partition
Vlj ,wi

in l-partition j that synchronizes with w-partition Vlj+1,wk
can be moved so that

both w-partitions are assigned to the same thread; as a result, the data will remain
local to the thread. In lines 27–32 of Algorithm 2, the LBC algorithm checks adjacent
l-partitions and ensures that w-partitions with the highest communication cost are
aligned vertically. During execution, w-partitions with the same ID will be assigned
to the same processor, ensuring that inter-thread communication between l-partitions
is minimal.

4.3.3 Cost Model & Windowing Heuristic

Statically scheduling the DAG for parallelism requires estimating the cost of each
node in the DAG accurately, to ensure a high degree of parallelism and good load
balance. The LBC algorithm implements two heuristics for two different parts of the
algorithm that make this possible to do efficiently: a simple cost model that does
not require machine-specific empirical performance measurements, and a heuristic for
searching only among a small number of possible partitionings.

Existing approaches for static scheduling of sparse factorization algorithms such
as that used in PaStiX [86] rely on accurate cost estimates for each BLAS operation
to find load balanced partitions; PaStiX uses empirically-measured runtimes for each
BLAS kernel. In contrast, the H-Level inspector uses a simple proportional cost model
to find an efficient partitioning of the DAG. Motivated by the fact that sparse matrix
computations are generally memory bandwidth-bound, this model uses the number of
participating nonzeros in each node of the DAG as a proxy for the cost of execution.

Definition. The participating nonzeros for a node Ni in the DAG is the total
number of nonzeros touched in order to complete the computation of Ni. For exam-
ple, for Cholesky factorization, the participating nonzeros for a node are the nonzeros
in the column block represented by Ni, plus the nonzeros touched when eliminating
the block. This can be computed exactly during symbolic factorization or be ap-
proximated with the sum of the column counts for every column such that the rows
corresponding to Ni have a nonzero, which can be derived in near-linear time in the
size of the matrix [37]. We use a similar metric for computing edge cost, which is the
number of nonzeros that must be communicated.

The proportional cost model need not be as exact as the kinds of cost models used
in PaStiX, due to the much coarser granularity of scheduling in ParSy. However,
any model used for static scheduling, even for coarse-grained tasks, must be accurate
enough to use as a proxy for performance. This simple cost is sufficient to capture the
real behavior of our static partitioning scheme. Figure 4.4 shows the actual maximal

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 46

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

2

4

6

8

10

12

0
100
200
300
400
500
600
700
800
900Maximal difference (sec)

Maximal difference cost
(participating nonzeros)

T
im

e
(s

ec
)

P
ar

ti
ci

pa
ti

ng
 n

on
ze

ro
s

(1
06)

Figure 4.4: The maximal difference in time matches the maximal difference in participating nonzeros.
Matrix Flan_1565 is used as an example; other matrices exhibit similar behavior.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

10

20

30

40

50

60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Actual time (sec)
Maximal difference (sec)
Last l-partition/Actual Time

T
im

e
(s

ec
)

R
at

io

Figure 4.5: The effect of l-partitioning on the performance and load balancing of Cholesky for
Flan_1565 starting from the sink node (shown with 1) to close to the source nodes (shown with
14). The dark rectangle shows the search window from the initial point which is point 2. The
line (1) in red shows the actual total runtime using each edge cut, (2) in dark green shows the
maximal difference, and (3) in blue shows the percentage of actual time spent on the closest-to-sink
l-partition.

difference in time versus the estimated maximal difference in cost for an example
matrix based on participating nonzeros for l-partitions constructed at different levels,
with the left side being cuts closest to the sink node. The cost closely matches
the observed difference in time measured using cycle counters. Unlike other static
partitioning schemes, the cost model used by ParSy is simple and requires no empirical
measurement, while effectively estimating performance for candidate partitions.

Given this cost metric, the second heuristic tries to find the partitioning with min-
imal load imbalance without searching through a large number of candidates. This
windowed search heuristic examines a small number of candidates in the neighbor-
hood of the first l-partition containing enough sub-DAGs for parallel execution. For
implementations, we use a window size (that is, the number of additional candidates
to search over) of three. Figure 4.5 shows the effect of the local search. The first

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 47

l-partition with enough sub-DAGs is at point 2, but the windowing heuristic chooses
a cut at point 5, which has the best load balance among candidates. As illustrated
by the blue line in Figure 4.5, choosing cuts closer to the source nodes results in less
work that can be done in parallel, since the l-partitions closer to the sink node cannot
usually be divided into enough w-partitions for best parallel performance.

4.4 Other Sparse Matrix Methods

5

6 7

4

10 11

9

128

13

14

3

15

2

1

1

(a) DAG of dependencies

x=b; // copy RHS to x

HLevel:

for (int i=0; i<blockNo; ++i){

b1 = block2col[i];

b2 = block2col[i+1];

x(b1:b2)=TRSM(L(b1:b2,b1:b2),x(b1:b2));

tempX=GEMV(L(b2:blockNo,b1:b2),x(b1:b2));

for(row index j in column i,k=0){
Atomic:

x(Li(j)) -= tempX(k++) ;}
}}

(b) Serial blocked code

x=b;

for(every l-partition i){
#pragma omp parallel for private(tempX){

for(every w-partition j){
for(every v ∈ HLevelSet[i][j]){

i = v;
b1 = block2col[i];

b2 = block2col[i+1];

x(b1:b2)=TRSM(L(b1:b2,b1:b2),x(b1:b2));

tempX=GEMV(L(b2:blockNo,b1:b2),x(b1:b2));

for(row index j in column i,k=0){
#pragma omp atomic

x(Li(j)) -= tempX(k++) ;}
}}}}

(c) Transformed with H-level

Figure 4.6: H-Level transformation for sparse triangular solve. Figure 4.6a shows an example DAG
representing the dependencies for sparse triangular solve. (b) The blocked forward substitution
algorithm with compressed column format that is annotated with HLevel and Atomic. (c) Code
after H-Level transformation. Gray lines in the code are not affected by the transformation.

The data dependence graphs and H-level inspection strategy in ParSy can be used
for a large class of sparse matrix computations. For example, for kernels such as LU,
QR, and orthogonal factorizations [116], which introduce fill-in during computation,
the input DAG to ParSy is the assembly tree that captures the dependencies in the
computation, including those that come from fill-ins. For kernels with no fill-in such
as ILU(0), IChol(0), and triangular solve, the input is the matrix DAG. This section
describes how ParSy works for sparse triangular solve, where computations are more
regular than Cholesky.

Triangular Solve. This kernel solves the linear equation Lx = b for x where L is
a lower triangular matrix and b is the right-hand side (RHS) vector. Figure 4.6 shows
two different implementations of sparse lower triangular solve for a matrix in column
storage format and dense RHS. A serial implementation of the algorithm is shown
in Figure 4.6b. Figure 4.6a shows the DAG of dependencies for the column-blocked
version of matrix L. ParSy’s H-Level inspector uses the DAG of L and builds the H-
Level set which is an input for the code in Figure 4.6c. The H-Level set corresponding
to the DAG in Figure 4.6a is shown in Figure 4.1b. Since the iterations in the sparse
triangular solve are more regular compared to Cholesky [16], the benefits of creating

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 48

Table 4.1: Test matrices, sorted in order of decreasing parallelism. nnz is the number of nonzeros
in L.

ID Name Rank (103) nnz (106) Parallelism
(METIS)

Parallelism
(SCOTCH)

1 G3_circuit 1585 127.3 16284 12154
2 ecology2 1000 54.3 11444 7454
3 thermal2 1228 71.9 10618 7087
4 apache2 715.2 164.7 10216 4427
5 StocF_1465 1465.1 1245 7755 6003
6 Hook_1498 1498 1783.8 7651 6032
7 tmt_sym 726.8 41.9 6371 4233
8 PFlow_742 742.8 598 5390 4796
9 af_shell10 1508 394.3 4900 3752
10 parabolic_fem 525.9 35 4712 3488
11 Flan_1565 1564.8 1715.9 3725 3271
12 audikw_1 943.7 1473.1 2438 2203
13 bone010 986.8 1210.1 2332 2020
14 thermomech_dM 204.3 9.7 2310 1480
15 Emilia_923 923.1 1992 2277 1927
16 Fault_639 638.8 1275.4 1595 1493
17 bmwcra_1 148.8 79.4 497 402
18 nd24k 72 435.9 48 48
19 nd12k 36 161.9 29 28

an H-Level set using ParSy are mainly in reducing synchronizations and increasing
locality from level coarsening.

4.5 Experimental Results

We compare the performance of ParSy-generated code with PaStiX [86], MKL Par-
diso [158], and Pardiso [158], which are specialized libraries for matrix factorization.
PaStiX uses the same left-looking supernodal algorithm as ParSy and also uses a static
scheduling heuristic. MKL Pardiso and Pardiso use the left-right looking supernodal
variant of Cholesky and uses hybrid static/dynamic scheduling. MKL also provides
optimized implementations for sparse triangular solve in compressed row, compressed
column, and blocked compressed row formats. Thus, Cholesky results are compared
with both PaStiX and MKL Pardiso while results for triangular solve are compared
to MKL’s best performing implementation amongst the three data structures. For
triangular solve, we use the factorized lower-triangular matrix L that is the result of
running Cholesky on each test matrix. We also parallelize each sparse kernel with
the level set used in wavefront techniques [187] and call this implementation level set.
The performance of the level set implementation is used as a baseline.

For the comparison, we use the set of symmetric positive definite matrices listed in

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 49

Table 4.1. The matrices are from [41] and belong to different domains with real num-
ber values in double precision. The testbed architectures are listed in Table 2.1. All
ParSy-generated code is compiled with GCC v.5.4.0 using the -O3 option. We report
the median of 5 executions for each experiment. The PaStiX, MKL Pardiso, and Par-
diso libraries are installed and executed using the recommended default configuration.
For Cholesky, the default ordering method for PaStiX is Scotch [139] and for MKL
Pardiso and Pardiso is Metis [103]. We use Metis ordering in ParSy for comparison
to MKL Pardiso and Pardiso, and use Scotch ordering when comparing to PaStiX;
this removes the effect of ordering and allows for a fair comparison. For triangular
solve, we do not show the effect of reordering since reordering would possibly change
the pattern of the matrix to something other than a triangular pattern. Unless oth-
erwise stated, we include only numeric factorization time and do not include time for
symbolic factorization.

Cholesky Performance. Figure 4.7 shows the performance of ParSy-generated
code compared to MKL Pardiso, PaStiX, and the level set implementation. The
ParSy-generated code is faster than MKL Pardiso by up to 2.7×, 1.7×, and 2.8× and
is faster than PaStiX by up to 1.7×, 1.8×, and 3.1× on Haswell-E, Haswll-EP,
and Skylake respectively. The speedup of ParSy over Pardiso follows the same trend
as its speedup over MKL Pardiso as shown for Hasewell-E in Figure 4.7.

One of the main objectives of ParSy’s inspector is to improve locality in sparse
codes. Figure 4.8 shows the relationship between the performance of ParSy and
MKL Pardiso to their memory accesses on the Haswell-E.The average memory access
latency [85] is a measure for locality and is obtained by gathering the TLB, L1 cache,
and last level cache (LLC) accesses and misses using the perf profiler. The Haswell-E
specification parameters are obtained from [85]. Figure 4.8 demonstrates a correlation
between the performance of the ParSy-generated code and the average memory access
cost. The coefficient of determination or R2 is 0.65, showing good correlation between
speed-up and memory access latency. For matrices where ParSy provides better
speedups, locality has been improved more. Data in Figure 4.8 shows the original
measurements for the 5 runs and not the medians.

Figure 4.9 compares the ratio of wait time to CPU time in ParSy and MKL Pardiso
on Haswell-E, measured using Intel’s VTune Amplifier. Wait time [205] is the time
that a software thread is stalled due to APIs that block or cause synchronization.
CPU time [205] is the time that the CPU takes to execute numerical factorization.
Because it uses dynamic scheduling, MKL Pardiso is more load balanced and thus
has a nearly zero wait time for all matrices, averaging 99% CPU utilization. ParSy,
however, prioritizes locality over load balance. ParSy improves locality as shown in

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5 ParSy(Metis) MKL Pardiso(Metis) Pardiso(Metis)
ParSy(Scotch) PaStiX(Scotch)

Sp
ee

d-
up

 o
ve

r
L

ev
el

 s
et

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

1

2

3

4

5

6

7

Sp
ee

d-
up

 o
ve

r
L

ev
el

 s
et

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

1

2

3

4

5

6

7

Sp
ee

d-
up

 o
ve

r
L

ev
el

 s
et

Figure 4.7: ParSy’s (numeric) performance for Cholesky compared to MKL Pardiso (numeric) and
PaStiX (numeric) on Haswell-E (top), Haswell-EP (middle), and Skylake (bottom). All times are
normalized over the level set numeric time.

Figure 4.8 and also utilizes the CPU cores fairly efficiently with an average of 95%
CPU utilization (a ratio of 0.05) as shown in Figure 4.9. Compared to MKL Pardiso,
ParSy provides a better trade-off between locality and load balance which leads to
the better performance results for ParSy shown in Figure 4.7.

To analyze the performance of ParSy we provide the average parallelism metric,
shown with Parallelism in Table 4.1, which is related to the sparsity of the matrix.
Parallelism is obtained by dividing the number of nodes in the DAG by its critical path
and is an approximate indicator of available parallelism. The analysis based on par-
allelism is provided for both Metis and Scotch orderings. The performance of ParSy is
shown with two different orderings. Figure 4.7 shows how the ParSy-generated code
improves the performance of matrices with different sparsity patterns. The Skylake

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 51

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3
R² = 0.649

Average Memory Access Latency (MKL / ParSy)

M
K

L
 t

im
e

/ P
ar

Sy
 t

im
e

Figure 4.8: Speed up and locality relation on Haswell-E. Average memory access latency is the
average cost of accessing memory in ParSy and MKL Pardiso. The relation between speed-up and
the memory access ratio is approximated with a line. The coefficient of determination or R2 of the
fitted line is 0.65.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18

ParSy(Metis) MKL Pardiso(Metis)

W
a

it
 T

im
e

/ C
P

U
 T

im
e

Figure 4.9: Wait time to total runtime of Cholesky’s numerical factorization in ParSy and MKL
Pardiso on Haswell-E.

processor has a larger number of cores compared to the other architectures; thus, we
expect matrices with more parallelism to perform better with ParSy on this architec-
ture; matrices 1, 2, and 3 which achieve high speed-ups in ParSy compared to MKL
Pardiso have the most parallelism while matrices 17 and 19 with the least parallelism
do not perform as well as the other matrices.

A fill-in reducing ordering method such as Metis or Scotch determines the number
of nonzeros in L and affects the structure of the assembly tree. For fair comparison
with libraries and to show ordering effect on ParSy, the performance of ParSy with
Metis and Scotch ordering is shown in Figure 4.7. As shown, ParSy is faster than
the library using the same ordering; also, ParSy performs well with both orderings.
Library approaches are optimized for a specific ordering and do not perform well when
the ordering is different from their default. For example, PaStiX with Metis ordering
is on average 2.2× slower than PaStiX with Scotch ordering and MKL Pardiso with
Scotch is on average 7.9× slower than MKL Pardiso with Metis.

Triangular Solve Performance. Figure 4.10 compares the performance of tri-
angular solve in ParSy to MKL and wavefront parallelism. The average speed-up of

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 52

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.2

0.4

0.6

0.8

1

1.2

1.4
ParSy MKL

Sp
ee

d-
up

 o
v

er
 L

ev
el

 s
et

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.5

1

1.5

Sp
ee

d-
up

 o
ve

r
L

ev
el

 s
et

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.5

1

1.5

2

2.5

3

T
ri

a
ng

u
la

r
T

im
e

/ M
K

L
 T

im
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.5

1

1.5

Sp
ee

d-
up

 o
ve

r
L

ev
el

 s
et

Figure 4.10: The performance of ParSy (numeric) for triangular solve compared to MKL (numeric) on
Haswell-E (top), Haswell-EP (middle), and Skylake (bottom) processors. All times are normalized
over the level set numeric time.

ParSy-generated code compared to the level set implementation is 1.2×, 1.3×, 1 .0×
on Haswell-E, Haswell-EP, and Skylake respectively. The speed-up for triangular
solve is relatively smaller than speed-ups for Cholesky. This may be due to two rea-
sons: (1) the triangular solve is more regular, and thus the level set implementation
does not create much load imbalance; (2) the kernel has less data reuse compared
to Cholesky which reduces the effects of optimizing for locality. However, ParSy is
faster than the highly-tuned MKL library on average by 2.6×, 4.7×, and 2.8× on
Haswell-E, Haswell-EP, and Skylake respectively.

In order to test our algorithm on non-chordal DAGs, we take the matrices in
Table 3.3 and modify them to include only the non-zeros in the lower triangular
part of each matrix; we then run triangular solve on this synthetic lower triangular
matrix. Unlike the L factors from matrix factorization, these lower triangular matrices

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.2

0.4

0.6

0.8

1

1.2

1.4
ParSy(Metis) MKL Pardiso(Metis)
ParSy(Scotch) PaStiX(Scotch)

C
ho

le
sk

y
T

im
e

/ P
aS

ti
X

 T
im

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
ho

le
sk

y
T

im
e

/ P
aS

ti
X

 T
im

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

C
ho

le
sk

y
T

im
e

/ P
aS

ti
X

 T
im

e

Figure 4.11: Symbolic + numeric time for ParSy-generated code, MKL Pardiso, and PaStiX for
Cholesky on Haswell-E (top), Haswell-EP (middle), and Skylake (bottom). All times are normalized
to PaStiX’s accumulated symbolic + numeric time.

are not chordal. Figure 4.12 compares the performance of ParSy-generated code
against the MKL library for the lower triangular part of matrices in Table 3.3. All
matrices are first reordered with the Metis ordering method. ParSy code is faster than
MKL on average by 1.6×, 2.3×, and 7.0× for Haswell-E (top), Haswell-EP (middle),
and Skylake processors respectively. We observe that the heuristic approach used
for finding sufficient w-partitions finds enough independent components for LBC to
produce a load balanced partitioning. The number of connected components is on

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.5
1

1.5
2

2.5
3

3.5
4 ParSy MKL

Sp
ee

d-
up

 o
ve

r
L

ev
el

 s
et

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

1

2

3

4

S
pe

ed
-u

p
ov

er
 L

ev
el

 s
et

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.5

1

1.5

2

2.5

Sp
ee

d
-u

p
ov

er
 L

ev
el

 s
et

Figure 4.12: The performance of ParSy (numeric) for triangular solve on non-chordal DAGs com-
pared to MKL (numeric) on Haswell-E (top), Haswell-EP (middle), and Skylake (bottom) processors.
All times are normalized over the level set numeric time.

average 1019× the target k number of w-partitions for these matrices with non-chordal
DAGs.

Inspection Overhead. The H-Level inspection is performed at compile time
in ParSy and the generated code only manipulates numerical values. ParSy’s accu-
mulated time includes compile-time inspection, code generation time, and numeric
factorization time. As demonstrated in Figure 4.11 , the accumulated time of ParSy
is 1.3× and 1.0× faster than MKL Pardiso and PaStiX respectively, on average
across all architectures. Figure 4.13 shows the accumulated time of ParSy-generated
code for triangular solve is in average 4.0× and 3.4× faster than the MKL accu-
mulated time on Haswell-E and Skylake respectively. The accumulated times for
Haswell-EP follows a similar pattern to Haswell-E.

Scalability Analysis. The average speed-up for ParSy is 4×, 6.6×, and 6.8×
compared to ParSy serial code on Haswell-E, Haswell-EP, and Skylake respectively.

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.2

0.4

0.6

0.8

1
ParSy MKL

T
ri

an
gu

la
r

T
im

e
/ M

K
L

 T
im

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.5

1

1.5

Sp
ee

d-
up

 o
ve

r
L

ev
el

 s
et

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.5

1

1.5

2

2.5

3

T
ri

an
gu

la
r

T
im

e
/ M

K
L

 T
im

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.2

0.4

0.6

0.8

1

T
ri

an
gu

la
r

T
im

e
/ M

K
L

 T
im

e

Figure 4.13: The symbolic + numeric time for ParSy-generated code and MKL for triangular solve on
on Haswell-E (top), Haswell-EP (middle), and Skylake (bottom) processors. All times are normalized
to MKL’s accumulated symbolic + numeric time.

For MKL Pardiso and PaStiX the average speed-ups compared to their own serial
codes are 3.9×, 7.8×, and 8.4× for MKL Pardiso and 4.3×, 7.4×, 7.5× for PaStiX
for Haswell-E, Haswell-EP, and Skylake. These numbers demonstrate good scaling
in all three implementations. However, the performance of ParSy is 1.4× faster than
the two libraries across all architectures.

4.6 Related Work

Wavefront parallelism [187, 148, 204, 172, 132, 77] is one of the most common ap-
proaches inspector-executor frameworks use to parallelize sparse matrix methods.

CHAPTER 4. TRANSFORMATION AND INSPECTION FOR PARALLELISM 56

These either employ manually-written inspectors and executors [172, 132, 77, 137,
117] or automate parts of the process by simplifying the inspector [187, 148, 204,
67]. These approaches use inspectors to obtain dependence information that is only
known at runtime. The H-Level sets created in ParSy are typically coarser than level
sets in wavefront parallelism, reducing the number of costly synchronizations. ParSy
also improves load balance in irregular sparse codes such as Cholesky compared to
wavefront approaches. The closest approach to ours that finds an efficient trade-off
between locality and load balance is in [16], which extends the Pluto framework [21]
with an automatic parallelization approach for transforming input affine sequential
codes. However, this is limited to structured and dense kernels.

Numerous hand-optimized parallel sparse libraries exist with efficient sparse matrix
kernels. These libraries differ in numerical methods they optimize and the platforms
supported. Implementations in [37, 26, 42] provide sequential sparse kernels such as
LU and Cholesky while parallel implementations exist in work such as SuperLU [45],
MKL Pardiso [158], and PaStiX [86] for shared memory architectures, and in [45, 7]
for distributed memory. Several libraries have also optimized specific sparse kernels
such as triangular solve [110, 132, 193, 189, 182] and sparse matrix-vector multiply
[195, 100, 124]. Sparse kernel variants differ between libraries; for example, PaStiX
implements left-looking sparse Cholesky while MKL Pardiso uses a left-right looking
approach [156]. ParSy optimizes left-looking Cholesky on shared memory architec-
tures.

Parallel sparse libraries use numerical method-specific code to determine data de-
pendencies and schedule the computation. These libraries typically inspect the sym-
bolic information of the matrix, which is called static/symbolic analysis, and use the
information for numerical manipulation with the objective of creating load-balanced
tasks that can execute in parallel. Libraries such as PaStiX [86] use static analysis
and static scheduling [2] while most other libraries use hybrid static/dynamic [167,
156] scheduling. Typically the DAG is partitioned during inspection with algorithms
such as the subtree-to-subcube heuristic [63, 141, 102]. While dynamic scheduling can
introduce overheads at runtime, static schedulers using profiling data on a specific
architecture limit portability. ParSy uses the matrix structure and numerical method
to compute a proportional cost that does not rely on the underlying architecture and
enables compile-time scheduling of tasks.

Chapter 5

Sparse Fusion

Sympiler inspects the computation pattern of an individual computation and gen-
erates efficient codes that run efficiently on a single core and a multicore processor
as discussed in Chapters 3 and 4. However, several numerical algorithms [152] and
optimization methods [23, 170, 30] in scientific simulations and data analytics codes
are typically composed of numerous sparse matrix computations, and there are op-
timization opportunities between them. For example, in iterative solvers [152] such
as Krylov methods [153], sparse kernels that apply a preconditioner or update the
residual are repeatedly executed inside and between iterations of the solver. Sparse
kernels with loop-carried dependencies, i.e. kernels with partial parallelism, are fre-
quently used in numerical algorithms, and the performance of scientific simulations
relies heavily on efficient parallel implementations of these computations. Optimizing
such kernels, especially when done separately results in synchronization overhead and
load imbalance. In this chapter, sparse fusion is introduced that creates an efficient
schedule and fused code for when a sparse kernel with loop-carried dependencies is
combined with another sparse kernel. Sparse fusion uses an inspector to apply a novel
Multi-Sparse DAG Partitioning (MSP) method on the DAGs of the two input sparse
kernels.

Sparse kernels that exhibit partial parallelism often have multiple wavefronts of
parallel computation where a synchronization is required for each wavefront, i.e. wave-
front parallelism [187, 77]. The amount of parallelism varies per wavefront and often
tapers off towards the end of the computation, which results in load imbalance. Fig-
ure 5.1 shows with dark lines the nonuniform parallelism for the sparse incomplete
Cholesky (SpIC0) and the sparse triangular solve (SpTRSV) kernels when SpTRSV
executes after SpIC0 completes. Separately optimizing such kernels exacerbates this
problem by adding even more synchronization. Also, opportunities for data reuse
between two sparse computations might not be realized when sparse kernels are op-

57

CHAPTER 5. SPARSE FUSION 58

200 400 600 800 1000 1200 1400 1600
Wavefront Number

100

101

102

103

104

105

106

107

N
um

be
r

of
 It

er
at

io
ns

 P
er

 W
av

ef
ro

nt

Unfused
Joint DAG

Figure 5.1: The nonuniform parallelism in the DAGs of sparse incomplete Cholesky and triangular
solver (annotated with unfused) and for the joint DAG of the two kernels results in load imbalance.
Higher value in the y-axis shows high parallelism in a given wavefront. Wavefront numbers in the
x-axis are numbered based on their order of execution.

timized separately.
Instead of scheduling iterations of sparse kernels separately, they can be scheduled

jointly. Wavefront parallelism can be applied to the joint DAG of two sparse compu-
tations. A data flow directed acyclic graph (DAG) describes dependencies between
iterations of a kernel [29, 174, 86]. A joint DAG includes all of the dependencies
between iterations within and across kernels. The joint DAG of sparse kernels with
partial parallelism with the DAG of another sparse kernel provides slightly more par-
allelism per wavefront without increasing the number of wavefronts. The yellow line in
Figure 5.1 shows how scheduling the joint DAG of SpIC0 and SpTRSV provides more
parallelism per wavefront and significantly reduces the number of wavefronts (syn-
chronizations). However, the load balance issues remain, and there are still several
synchronizations.

Wavefronts of the joint DAG can be aggregated to reduce the number of synchro-
nizations. DAG partitioners such as Load-Balanced Level Coarsening (LBC) [28] and
DAGP [89] apply aggregation, however, when applied to the joint DAG because they
aggregate iterations from consecutive wavefronts, load imbalance might still occur.
Also, by aggregating iterations from wavefronts in the joint DAG, DAG partitioning
methods potentially improve the temporal locality between the two kernels but, this
can disturb spatial locality within each kernel. For example, for two sparse kernels
that only share a small array and operate on different sparse matrices, optimizing
temporal locality between kernels will not be profitable. Finally, even when applied
to the DAG of an individual kernel, DAGP and LBC are slow for large DAGs be-
cause of the overheads of coarsening [89]. This problem exacerbates when applied to
the joint because the joint DAG is typically 2-4× larger than an individual kernel’s

CHAPTER 5. SPARSE FUSION 59

(a) Initial AST (b) Dependency DAGs and matrix

(c) LBC unfused schedule (d) LBC joint DAG schedule (e) Sparse fusion schedule

1 // Sparse Lower Triangular Solve

2 // (SpTRSV) Lx = b

3 Fuse:for(i1=0;i1<n;i1++){

4 for(i2=Lp[i1];i2<Lp[i1+1]-1;i2++){

5 x[i1] -= Lx[i2]*x[Li[i2]];

6 }

7 x[i1] /= Lx[Lp[i1+1]-1];

8 }

9 // Sparse Matrix-Vector Multiply

10 // (SpMV) y = Ax

11 Fuse:for(j1=0;j1<n;j1++){

12 for (j2=Ap[j1];j2<Ap[j1+1];j2++){

13 Atomic:y[Ai[j2]] += Ax[j2]*x[j1];

14 }

15 }

1

...

11

1 ... 11
•••••••••••

F

4

5

3
8

7
9

6
10

11

2

1

1 2 3 4 5 6 7 8 9 10 11

G1

G2

tim
e

tim
e

thread 1

1

2

3

4

thread 2

5

6

thread 3

7

8

9

10

11

1 2 5 6 9 10

3 4 7 8 11

s1

s2

s3

w1 w2 w3

thread 1

1

1

2

2

3

3

4

4

thread 2

5

5

6

6

thread 3

7

7

8

8

9

9

10

10

11

11

w1 w2 w3

thread 1

w1

1

2

3

4

thread 2

w2

5

6

5

6

thread 3

w3

7

8

9

9

11

10

11

10

1

2

3

4

7

8

s1

s2

1

Figure 5.2: Figures 5.2c-5.2e show three different schedules for running a sparse lower triangular ker-
nel (SpTRSV) followed by a sparse matrix-vector multiplication (SpMV) as shown in Figure 5.2b.
We choose the number of processors (r) to be three. Solid purple (G1) and dash-dotted yellow
(G2) vertices in order represent iterations of SpTRSV and SpMV and edges show the dependencies
between iterations. Dashed edges in Figure 5.2b show dependencies between two kernels and cor-
respond to the nonzero elements of matrix F . The unfused implementation schedules each DAG
separately as shown in Figure 5.2c. Two different fused implementations in Figure 5.2d and 5.2e use
both DAGs and dependencies between kernels to build a fused schedule.

DAG1.
This chapter presents sparse fusion that creates an efficient schedule and fused code

for when a sparse kernel with loop-carried dependencies is combined with another
sparse kernel. Sparse fusion uses an inspector to apply a novel Multi-Sparse DAG
Partitioning (MSP) runtime scheduling algorithm on the DAGs of the two input
sparse kernels. MSP uses a vertex dispersion strategy to balance workloads in the

1The DAGP and LBC runtimes for different DAG sizes are shown in Section A.1.

CHAPTER 5. SPARSE FUSION 60

fused schedule, uses two novel iteration packing heuristics to improve the data locality
due to spatial and temporal locality of the merged computations, and uses vertex
pairing strategies to aggregate iterations without joining the DAGs.

Figure 5.2 compares the schedule created by sparse fusion (sparse fusion schedule)
with the schedules created by applying LBC to the individual DAGs of each sparse
kernels (LBC unfused schedule) and LBC applied to the joint DAG (LBC joint DAG
schedule). All approaches take the input DAGs in Figure 5.2b. Solid purple vertices
are the DAG of sparse triangular solve (SpTRSV) and the dash-dotted yellow cor-
respond to Sparse Matrix-Vector multiplication (SpMV). LBC is a DAG partitioner
that partitions a DAG into a set of aggregated wavefronts called s-partitions2 that
run sequentially, each s-partition is composed of some independent w-partitions. In
the LBC unfused schedule in Figure 5.2c, LBC is used to partition the SpTRSV DAG
and will create two s-partitions, i.e. s1 and s2. The vertices of SpMV are scheduled to
run in parallel in a separate wavefront s3. This implementation is not load balanced
because the number of partitions that can run in parallel differs for each s-partition.
In the LBC joint DAG schedule, the DAGs are first joint using the dependency in-
formation between the two kernels shown with blue dotted arrows and then LBC is
applied to create the two s-partitions in Figure 5.2d. These s-partitions are also not
load balanced, for example s2 only has one partition. Sparse fusion uses MSP to
first partition the SpTRSV DAG and then disperses the SpMV iterations to create
load-balanced s-partitions, e.g. the two s-partitions in Figure 5.2e have three closely
balanced partitions.

SpTRSV solves Lx = b to find x and SpMV performs y = A∗x where L is a sparse
lower triangular matrix, A is a sparse matrix, and x, b, and y are vectors. The LBC
joint DAG schedule interleaves iterations of two kernels to reuse x. However, this
can disturb spatial locality within each kernel because the shared data between the
two kernels, x, is smaller than the amount of data used within each kernel, A and L.
With the help of a reuse metric, sparse fusion realizes the larger data accesses inside
each kernel and hence packs iterations to improve spatial locality within each kernel.

We implement sparse fusion as an embedded domain-specific language in C++ that
takes the specifications of the sparse kernels as input, inspects the code of the two
kernels, and transforms code to generate an efficient and correct parallel fused code.
The primary focus of sparse fusion is to fuse two sparse kernels where at least one
of the kernels has loop-carried dependence. Sparse fusion is tested on seven of the
most commonly used sparse kernel combinations in scientific codes which include
kernels such as sparse triangular solver, incomplete Cholesky, incomplete LU, diagonal

2S-partitions are more general than l-partitions previously defined in Chapter 4. An l-partition contains all vertices
within a wavefront range while a s-partition contain some or all of them.

CHAPTER 5. SPARSE FUSION 61

1 #include "def.h"

2 void main(){

3 Int n;

4 Int r(MAX_THREADS);

5 CSR L(n,n,"./L.mtx");

6 CSC A(n,n,"./A.mtx");

7 Vec x(n), y(n);

8 Vec b(n,"./b.mtx");

9 ...

10 Fuse TM(

11 SpTRSV(L,b,x),

12 SpMV(A,x,y)

13);

14 TM.gen_c("TrsvMv.h"

15 , "Driver.cpp",r);}
(a) Input specification

1 #include "TrsvMv.h"

2 #include "MSP.h"

3 void main(){

4 L.load();A.load();b.load();

5 /// -------- Inspector -------- ///

6 G1 = SpTRSV.intra_DAG(L);//Sec 2.2

7 G2 = SpMV.intra_DAG(A);

8 F = inter_DAG(A,L,b,x,y);//Sec 2.2

9 reuse_ratio = compute_reuse(

10 A,L,b,x,y); //Sec 2.2

11 FusedSchedule = MSP(G1,G2,F,

12 r,reuse_ratio); //Sec 3

13 /// -------- Executor -------- ///

14 fused_code(L,b,A,x,y,FusedSchedule,

15 reuse_ratio); /*Sec 2.3*/}
(b) Driver code (driver.cpp)

1
Figure 5.3: Sparse fusion’s input and the driver code.

scaling, and matrix-vector multiplication. The generated code is evaluated against
MKL and ParSy with average speedups of 5.1× and 1.6× respectively. Sparse fusion
compared to fused implementations of LBC, DAGP, and wavefront techniques applied
to the joint DAG provides on average 5.1×, 7.2× and 2.5× speedup respectively.

1 Fuse:for(I1){//loop 1

2 ...

3 for(In)

4 x[h(I1,...,In)] = a*y[g(I1,...,In)];

5 }

6 Fuse:for(J1){//loop 2

7 ...

8 for(Jm)

9 z[h’(J1,...,Jm)] = a*x[g’(J1,...,Jm)];

10 }

(a) Before

1 if(FusedSchedule.fusion && reuse_ratio < 1){

2 for (every s-partition s){

3 #pragma omp parallel for

4 for (every w-partition w){

5 for(v ∈ FusedSchedule[s][w].L1){//loop 1

6 ...

7 for(In)

8 x[h(v,...,In)] = a*y[g(v,...,In)];

9 }

10 for(v ∈ FusedSchedule[s][w].L2){//loop 2

11 ...

12 for(Jm)

13 z[h’(v,...,Jm)] = a*x[g’(v,...,Jm)];

14 }}}}

(b) After - separated variant

1 if(FusedSchedule.fusion && reuse_ratio >= 1){

2 for (every s-partition s){

3 #pragma omp parallel for

4 for (every w-partition w){

5 for(v ∈ FusedSchedule[s][w]){

6 if(v.type == L1){//loop 1

7 for(In)

8 x[h(v.id,...,In)] = a*y[g(v,...,In)];

9

10 } else {//loop 2

11 for(Jm)

12 z[h’(v.id,...,Jm)] = a*x[g’(v,...,Jm)];

13 }

14 }}}}

(c) After - interleaved variant
1

Figure 5.4: The general form of the sparse fusion code transformation with its two variants, inter-
leaved and separated. I1...In and J1...Jm represent two loop nests. h’ and g’ are data access
functions. FusedSchedule contains the schedule for iterations of loops I1, shown with L1 and J1,
shown with L2.

CHAPTER 5. SPARSE FUSION 62

5.1 Sparse Fusion

Sparse fusion is implemented as a code generator with an inspector-executor technique
that can be used as a library. It takes the input specification shown in Figure 5.3a and
generates the inspector and the executor in Figure 5.3b. The inspector includes the
MSP algorithm and functions that generate its inputs, i.e. dependency DAGs, reuse
ratio, and the dependency matrix. The executor is the fused code that is created by
the fused transformation.

5.1.1 Code Generation

Sparse fusion is implemented as an embedded domain-specific language. It takes
as input the specification shown in Figure 5.3a and generates the driver code in
Figure 5.3b. At compile-time, the data types and kernels in Figure 5.3a are converted
to an initial Abstract Syntax Tree (AST) using TM.gen_c() in line 14. Lines 11 and
lines 12 in Figure 3a demonstrate how the user specifies the two kernels for the
running example in Figure 2 as inputs to sparse fusion. The corresponding AST for
the example is shown in Figure 2a.

At runtime by running the driver code in Figure 5.3b, the inspector creates a fused
schedule, and the executor runs the fused schedule. The inspector first builds inputs
to MSP using functions intra_DAG, inter_DAG, and compute_reuse in lines 6–10 in
Figure 5.3b and then calls MSP in line 11 to generate FusedSchedule for r threads.
Then the executor code, fused_code in line 14 in Figure 5.3b, runs in parallel using
the fused schedule.

5.1.2 The Inspector in Sparse Fusion

The MSP algorithm requires kernel-specific inputs. Its inputs are the dependency
matrix between kernels, the DAG of each kernel, and a reuse ratio. Sparse fusion
analyzes the kernel code, available from its AST, to generate inspector components
that create these inputs.

Dependency DAGs: Lines 6–7 in Figure 5.3b use an internal domain-specific library
to generate the dependency DAG of each kernel. General approaches such as work
by Mohammadi et al. [127, 126, 166] can also be used to generate the DAGs however,
that will lead to higher inspection times compared to a domain-specific approach. For
example, with domain knowledge, sparse fusion will use the L matrix as the SpTRSV
DAG G1 in Figure 5.2b. Each nonzero Lij represents a dependency from iteration i
to j.

CHAPTER 5. SPARSE FUSION 63

Dependency Matrix F : MSP uses the dependency information between kernels to
create a correct fused schedule. By running the inter_DAG function, sparse fusion
creates this information and stores it in matrix F . To generate inter_DAG, sparse
fusion finds dependencies between statements of the two kernels by analyzing the
AST. Each nonzero Fi,j represents a dependency from iteration j of the first loop,
i.e. column j of F , to iteration i of the second loop, i.e. row i of F . In Figure 5.2a,
there exists a read after write (flow) dependency between statements x[i1] in line
5 and x[j1] in line 13. As a result, sparse fusion generates the function shown in
Listing 5.1. The resulting F matrix, generated at runtime, is shown in Figure 2b.

for(i1=0; i1<n; i1++){

j1 = i1;

if(A.p[j1] < A.p[j1+1])

F[j1].append(i1); }

Listing 5.1: inter_DAG function for the example in Figure 5.2a.

Reuse Ratio: MSP uses a reuse ratio based on the memory access patterns of
the kernels to decide whether to improve locality within each kernel or between the
kernels. The inspector in line 9 in Figure 5.3b computes the reuse ratio metric. The
metric represents the ratio of common to total memory accesses of the two kernels,
i.e. common memory access

max(kernel1 accesses, kernel2 accesses) . For a reuse ratio larger than one, the number
of common memory accesses between the two kernels is larger than the accesses
inside a kernel. Sparse fusion estimates memory accesses using the ratio of the size
of common variables over the maximum of the total size of variables amongst the
kernels. For the running example, the code generated for compute_reuse is 2*x.n /
max(A.size+x.n+y.n,L.size+x.n+b.n). Since x is smaller than L or A, the reuse
ratio is less than one.

5.1.3 Fused Code

To generate the fused code, a fused transformation is applied to the initial AST at
compile-time and two variants of the fused code are generated, shown in Figure 5.4.
The transformation variants are separated and interleaved. The fused code uses the
reuse ratio at runtime to select the correct variant for the specific input. The variable
fusion in line 1 of Figure 5.4b and 5.4c is set to False if MSP determines fusion is not
profitable. Figure 5.4a shows the sequential loops in the AST, which are annotated
with Fuse, and are transformed to the separated and interleaved code variants as
shown in order in Figures 5.4b and 5.4c. The separated variant is selected when the
reuse ratio is smaller than one. In this variant, iterations of one of the loops run

CHAPTER 5. SPARSE FUSION 64

consecutively without checking the loop type. The interleaved variant is chosen when
the reuse ratio is larger than one. In this variant, iterations of both loops should run
interleaved, and the variant checks the loop type per iteration as shown in lines 6 and
10 in Figure 5.4c.

5.2 Multi-Sparse DAG Partitioning

2

1 3

4

5

6

87

9
H1

w1 w2 w3

H1,1 H1,2 H1,3

11

10

H2

w1

H2,1

H.size() = 2
H1.size() = 3
H2.size() = 1

(a) Step 1-vertex partitioning.

H1,1 H1,2 H1,3

H2,1

2

1 3

4

5

6

87

9
Vs1

w1 w2 w3

1

2

3

4

T1,1

5

6

T1,2

7 8

9

T1,3

11

10

Vs2

Vs3
10 11 T2,1

(b) Step 1-vertex pairing.

2

1 3

4

5

6

87

9
w1 w2 w3

1

2

3

4

5

6

7 8

911

10

SN = 1 SN = 1 SN = 1

10

11

S
(c) Step 2-merging.

2

1 3

4 6

5
5

6

87

9
9w1 w2 w3

11

10

11

10

2

1 3 7

4

8

w1 w2 w3

(d) Step 2-slacked vertex assignment.

Vs1

Vs2

1

Figure 5.5: Stages of MSP for DAGs G1 and G2 and matrix F in the running example shown in
Figure 5.2b where the reuse ratio (reuse_ratio) is smaller than one and number of processors (r)
is three. The first step of the algorithm selects G1 and creates H partitioning for three processors
using the LBC algorithm as shown in Figure 5.5a. Then it pairs each Hi,j through dependencies
in matrix F to create partitioning T of G2 as shown in Figure 5.5b. The partitions with the same
line pattern/color are pair partitions. In the second step, MSP merges pair partitions that cannot
be dispersed such as first w-partitions of s-partitions 2 and 3 (Vs3,w1 and Vs2,w1) in Figure 5.5b,
these are merged into Vs2,w1 in Figure 5.5c. Slack vertices, which are denoted as S are shown with
blue dotted circles in Figure 5.5c. Slack vertices are assigned into imbalanced w-partitions as shown
in Figure 5.5d. Since the reuse ratio is smaller than one, vertices inside each partition are packed
separately as shown in Figure 5.2e.

Sparse fusion uses the multi-sparse DAG partitioning (MSP) algorithm to create
an efficient fused partitioning that will be used to schedule iterations of the fused code.
MSP partitions vertices of the DAGs of the two input kernels to create parallel load-

CHAPTER 5. SPARSE FUSION 65

balanced workloads for all cores while improving locality within each thread. This
section describes the inputs, output, and three steps of the MSP algorithm using the
running example in Figures 5.2 and 5.5.

Algorithm 3: The MSP algorithm.
Input : G1(V1, E1, c1), G2(V2, E2, c2), F , r, reuse_ratio
Output: V
/* (i) Vertex partitioning and partition pairing */

1 if |E2| > 0 then
2 [H, k] = LBC(G2, r).list(), T = ∅, V = ∅

/* Backward pairing */
3 for (i = 1 : H.size()) do
4 for (j = 1 : Hi.size()) do
5 Ti,j = BFS(Hi,j , F,G1)
6 V.add(Ti,j , Hi,j)

7 end
8 end
9 if |V| > 2× (|V1|+ |V2|) then V.fusion = False, exit()

10 else
11 [H, k] = LBC(G1, r).list(), T = ∅, V = ∅

/* Forward pairing */
12 for (i = 1 : H.size()) do
13 for (j = 1 : Hi.size()) do
14 Ti,j = BFS(Hi,j , F

T , G2)
15 Ui,j = Ti,j .remove_uncontained(F)
16 V.add(Hi,j , Ti,j , Ui,j)

17 end
18 end
19 end

/* (ii) Merging and slacked vertex assignment */
20 S = slack_info(V)
21 for (every w-partition pair (w,w′) ∈ V.pairs) do
22 if (SN(w) = 0) ∧ (SN(w′) = 0) then V.merge(w,w′)
23 end
24 V = V − S, ε = |V| × 0.001
25 for (i = 1 : V.b) do
26 for (j = 1 : mi) do
27 if max_diff(Vsi ,Vsi,wj) > ε ∧ S 6= ∅ then S = Vsi,wj .balance_with_pair(S)
28 if max_diff(Vsi ,Vsi,wj) > ε ∧ S 6= ∅ then S = Vsi,wj .balance_with_slacks(S)
29 end
30 if S 6= ∅ then S = Vsi .assign_even(S)
31 end

/* (iii) Packing */
32 if reuse_ratio ≥ 1 then V.interleaved_pack(F)
33 else V.separated_pack()

5.2.1 Inputs and Output to MSP

The inputs to MSP (shown in Algorithm 3) are two DAGs G1 and G2 from in order
lexicographically first and second input kernels, and the inter-DAG dependency ma-
trix F that stores the dependencies between kernels. A DAG shown with Gj(Vj, Ej, c)

has a vertex set Vj and an edge set Ej and a non-negative integer weight c(vi) for each

CHAPTER 5. SPARSE FUSION 66

vertex vi ∈ Vj. The vertex vi of Gj represents iteration i of a kernel and each edge
shows a dependency between two iterations of a kernel. c(vi) is the computational
load of a vertex and is defined as the total number of nonzeros touched to complete its
computation. Because sparse matrix computations are generally memory bandwidth-
bound, c(vi) is a good metric to evaluate load balance in the algorithm [28]. F is
stored in the compressed sparse row (CSR) format and Fi is used to extract the set
of vertices in G1 that vi ∈ V2 depends on. Other inputs to the algorithm are the
number of requested partitions r, which is set to the number of cores, and the reuse
ratio discussed in section 5.1.2.

The output of MSP is a fused partitioning V that has b ≥ 1 s-partitions, each
s-partition contains up to k > 1 w-partitions, where k ≤ r. MSP creates b disjoint
s-partitions from vertices of both DAGs, shown with Vsi where ∪bi=0Vsi = V1 ∪ V2.
Each s-partition includes vertices from a lower bound and upper bound of wavefront
numbers shown with si = [lbi..ubi) as well as some slack vertices. For each s-partition
Vsi , MSP creates mi ≤ k independent w-partitions Vsi,wj

where Vsi,w1 ∪ ...∪Vsi,wmi
=

Vsi . Since w-partitions are independent, they can run in parallel.
Example. In Figure 5.2b, the SpTRSV DAG G1, the SpMV DAG G2, the inter-

DAG dependency matrix F are inputs to MSP. Other inputs to MSP are r=3 and the
reuse_ratio. The fused partitioning shown in Figure 5.2e has two s-partitions (b=2).
The first s-partition has three w-partitions (m1=3) shown with Vs1 = {[1, 2, 3, 4]; [5, 6,

5, 6]; [7, 8, 9, 9]}, the underscored vertices belong to G1.

5.2.2 The MSP Algorithm

Algorithm 3 shows the MSP algorithm. It takes the inputs and goes through three
steps of (1) vertex partitioning and partition pairing with the objective to aggregate
iterations without joining the DAGs of the inputs kernels; (2) merging and slack ver-
tex assignment to reduce synchronization and to balance workloads; and (3) packing
to improve locality.

Vertex Partitioning and Partition Pairing.

The first step of MSP partitions one of the input DAGs G1 or G2, and then uses
that partitioning to partition the other DAG. The created partitions are stored in
V . Partitioning the joint DAG is complex and might not be efficient because of the
significantly larger number of edges and vertices added compared to the individual
DAG of each kernel. Instead, MSP ignores the dependencies across kernels and first
creates a partitioning from one of the DAGs with the help of vertex partitioning. Then
the other DAG is partitioned using a partition pairing strategy. The DAG that is

CHAPTER 5. SPARSE FUSION 67

partitioned first is the head DAG and the other is the tail DAG. A head DAG choice
strategy is used to select the head DAG.

Vertex partitioning. MSP uses the LBC DAG partitioner [28] to construct a parti-
tioning of the head DAG in lines 2 and 11 of Algorithm 3 by calling the function LBC.
The resulting partitioning has a set of disjoint s-partitions. Each s-partition contains
k disjoint w-partitions which are balanced using vertex weights. Disjoint w-partitions
ensure all w-partitions within s-partitions are independent. The created partitions
are stored in a two-dimensional list H using list, e.g. w-partition wj of s-partition
si is stored in Hij.

Partition pairing. The algorithm then partitions the tail DAG with forward pair-
ing, if G1 is the head DAG, or with backward pairing, if G2 is the head DAG. With
the pairing strategy, some of the partitions of the tail DAG are paired with the head
DAG partitions. Pair-partitions are self-contained so that they execute in parallel
if assigned to the same s-partition. The created partitions are put in the fused par-
titioning V to be used in step two. The following first describes the condition for
partitions to be self-contained and then explains the forward and backward pairing
strategies.

Pair partitions Hij and Tij are called self-contained if all reachable vertices from
a breadth first search (BFS) on ∀v ∈ Hij ∪ Tij through vertices of G1 and G2 are
in Hij ∪ Tij. Self-contained pair partition (Hip, Tip) and pair partition (Hiq, Tiq) can
execute in parallel without synchronization if in the same wavefront i, i.e. ∀1 ≤ i ≤ b∧
(1 ≤ p, q ≤ mi). Partitions that do not satisfy this condition create synchronizations
in the final schedule.

The backward pairing strategy visits every partition Hi,j and performs a BFS
(line 5) from vertex vl ∈ Hi,j to its dependent vertices in G1 which are reachable
through Fl. Reachable vertices are stored in Tij. The partitions in H and T are
assigned a w- and s-partition and are then put in the fused partitioning V (via add
in line 6). The assigned s- and w-partitions for Hij are si+1 and wj respectively, i.e.
Vsi+1,wj

. Tij should be executed before Hij thus is placed in s-partition si or Vsi,wmi+1 ,
where mi is number of w-partitions in Vsi at this point. If a vertex in Hi,j depends
on more than one vertex in G1, some vertices are replicated in different T partitions.
While replication leads to redundant computation, it ensures that the pair partition
(Hi,j, Ti,j) is self-contained because vertices that depend on the vertices in Hi,j will
be included in Ti,j. MSP performs fusion only if profitable, hence fusion is disabled
(by setting fusion to False) if the number of redundant computations go beyond a
threshold. This threshold is 2 × (|V1| + |V2|) in line 9 and is defined as the sum of
vertices of both DAGs.

CHAPTER 5. SPARSE FUSION 68

The forward pairing strategy iterates over every partition Hi,j and performs a BFS
from vertex vl ∈ Hi,j to its reachable vertices in G2 through F T

l , see lines 12–18 in
Algorithm 3. The list of reachable vertices are stored in Ti,j via BFS in line 14. If
a vertex vm in Ti,j depends on vertex vl in G1 and vl does not exist in Hi,j then vm
should be removed to ensure (Hi,j, Ti,j) is self contained. The remove_uncontained
function in line 15 removes vertex vm and puts it in partition Ui,j. Finally, the
created partitions are assigned to the fused partitioning V via add in line 16 as
follows: Vsi,wj

= Hi,j, Vsi+1,wmi+1+1 = Ti,j, Vsi+1,wmi+1+1 = Ui,j.
The head DAG choice. MSP chooses the DAG with edges as the head DAG to

improve locality. Locality is improved because the head DAG is partitioned with
LBC. LBC creates well-balanced partitions with good locality when applied to DAGs
with edges. Selecting G2 as the head DAG reduces inspector overhead. If both G1

and G2 are DAGs of kernels with dependency, then G2 is chosen as the head DAG
to reduce inspector overhead. When G2 is partitioned first, MSP chooses backward
pairing which is more efficient compared to forward pairing. Forward pairing traverses
F and its transpose F T and thus performs 2 ∗ nnzF + 2 ∗ n operations where nnzF
is the number of nonzeros in F . However, backward pairing only traverses F and
performs nnzF + n operations.

Example. Figures 5.5b shows the output of MSP after the first step for the
inputs in Figure 5.2b. MSP chooses G1 as the head DAG because it has edges
(|E1| > 1), G2 has no edges. In vertex partitioning, G1 is partitioned with LBC
to create up to three w-partitions (because r = 3) per s-partition. The created
partitions are shown in Figure 5.5a and are stored in H. The first s-partition
Vs1 is stored in H1 and its three w-partitions are indexed with H1,1, H1,2, and
H1,3. Similarly, Vs2 is stored H2 and its only w-partition is in H2,1. Figure 5.5b
shows the output of partition pairing. Since G1 is the head DAG, MSP uses for-
ward pairing and performs a BFS from each partition in H to create self-contained
pair partitions stored in T . For example, a BFS from H1,1 = {1, 2, 3, 4} creates
T1,1 = {1, 2, 3, 4}. Since T1,1 and H1,1 are self-contained, no vertices are removed
from T1,1 and thus U1,1 = ∅. Finally, MSP puts H1,1 and T1,1 in Vs1,w1 and Vs2,w2

respectively, and adds (Vs1,w1 ,Vs2,w2) to V .pairs. The final partitions and pairings
as shown in Figure 5.5b are: V = [{H1,1, H1,2, H1,3}, {H2,1, T1,1, T1,2, T1,3}, {T2,1}] =

[{{1, 2, 3, 4}, {5, 6}, {7, 8, 9}}, {{10, 11}, {1, 2, 3, 4}, {5, 6}, {7, 8, 9}}, {{10, 11}}] and the
pairing information is: V .pairs = {(Vs1,w1 ,Vs2,w2), (Vs1,w2 ,Vs2,w3), (Vs1,w3 ,Vs2,w4), (Vs2,w1

,Vs3,w1)}.

CHAPTER 5. SPARSE FUSION 69

Merging and Slack Vertex Assignment.

The second step of MSP reduces the number of synchronizations by merging some of
the pair partitions in a merging phase. It also improves load balance by dispersing
vertices across partitions using slacked vertex assignment.

Slack definitions: A vertex v can always run in its wavefront number l(v). However,
the execution of vertex v can sometimes be postponed up to SN(v) wavefronts without
having to move its dependent vertices to later wavefronts. SN(v) is the slack number
of v and is defined as SN(v) = PG− l(v)−height(v) where height(v) is the maximum
path from a vertex v to a sink vertex (a sink vertex is a vertex without any outgoing
edge), PG is the critical path of G, and l(v) is the wavefront number of v. A vertex
with a positive slack number is a slack vertex. To compute vertex slack numbers
efficiently, instead of visiting all vertices, MSP iterates over partitions and computes
the slack number of each partition in the partitioned DAG, i.e. partition slack number.
The computed slack number for a partition is assigned to all vertices of the partition.
As shown in line 20 of Algorithm 3, all partition slack numbers of V are computed
via slack_info and are stored in S. For example, because vertices in Vs2,w3 can be
postponed one wavefront, from s-partition 2 to 3, their slack number is 1. Vertices in
w-partitions Vs2,w1 and Vs3,w1 can not be moved because their slack numbers are zero.

Merging. MSP finds pair partitions with partition slack number of zero and then
merges them as shown in lines 21-23. Since pair partitions are self contained,
merging them does not affect the correctness of the schedule. Algorithm 3 visits
all pair partitions (w,w′) in V .pairs and merges them using the merge function in
line 22 if their slack numbers are zero, i.e. SN(w) = 0 and SN(w′) = 0. The resulting
merged partition is stored in V in place of the w-partition with the smaller s-partition
number.

Slacked vertex assignment. The algorithm then uses slacked vertex assignment
to approximately load balance the w-partitions of an s-partition using a cost model.
The cost of w-partition w ∈ Vsi is defined as cost(w) =

∑
v∈w c(v). A w-partition is

balanced if the maximal difference of its cost and the cost of other w-partitions in its
s-partition is smaller than a threshold ε. The maximal difference for a w-partition
inside a s-partition is computed by subtracting its cost from the cost of the w-partition
(from the same s-partition) with the maximum cost.

MSP first removes all slacked vertices S from the fused partitioning V in line 24. It
then goes over every s-partition i and w-partition j and balances Vsi,wj

by assigning a
slacked vertex to it where possible. W-partition Vsi,wj

becomes balanced with vertices
from its pair partition using the function balance_with_pair in line 27. If Vsi,wj

is
still imbalanced, balance_with_slacks in line 28 balances the w-partition using the

CHAPTER 5. SPARSE FUSION 70

slacked vertices vl ∈ S that satisfy the following condition l(vl) < i < (l(vl)+SN(vl)).
Slack vertices in S that depend on each other are dispersed as a group to the same
w-partition for correctness. In line 30, slacked vertices in S that are not postponed to
later s-partitions are evenly divided between the w-partitions of the current s-partition
(Vsi) using the assign_even function.

Example. Figure 5.5d shows the output of the second step of MSP from the
partitioning in Figure 5.5b. First pair partitions (Vs2,w1 ,Vs3,w1), shown with red dash-
dotted circles in Figure 5.5b, are merged because their slack numbers are zero. The
resulting merged partition is placed in Vs2,w1 to reduce synchronization as shown in
Figure 5.5c. Then slacked vertex assignment balances the w-partitions in Figure 5.5c.
The balanced partitions are shown in Figure 5.5d. The slacked vertices S, are shown
with dotted blue circles in Figure 5.5c. The w-partitions in Vs1 are balanced using
vertices of their pair partitions, e.g. the yellow dash-dotted vertices 5 and 6 are
moved to w2 in Vs1 as shown in Figure 5.5d. balance_with_slacks is used to balance
partitions in Vs2 . This is because the vertices in S do not belong to the pair partitions
of the w-partitions in Vs2 . However, since the slack vertices in S can execute in either
s-partition two or three because they are from s-partition one and have a slack number
of one, they are used to balance the w-partitions in Vs2 .

Packing.

The third step of MSP reorders the vertices inside a w-partition to improve data
locality for a thread within each kernel or between the two kernels. The previous
steps of the algorithm create w-partitions that are composed of vertices of one or
both kernels however the order of execution is not defined. Using the reuse ratio,
the order at which the nodes in a w-partition should be executed is determined with
a packing strategy. MSP has two packing strategies: (i) in interleaved packing,
the vertices of the two DAGs in a w-partition are interleaved for execution and (ii)
in separated packing the vertices of each kernel are executed separately. Interleaved
packing improves temporal locality between kernels while separated packing enhances
spatial and temporal locality within kernels. When the reuse ratio is greater than one,
in line 32 of Algorithm 1 function interleaved_pack is called to interleave iterations
of the two kernels based on F. Otherwise, separated_pack is called (line 33) to pack
iterations of each kernel separately.

Example. Figure 5.2e shows the output of MSP’s third step from the partition-
ing in Figure 5.5d. Since the reuse ratio is smaller than one separated packing is
chosen thus Vs2,w1 is stored as Vs2,w1 = {[10, 11, 10, 11]}. Vertices are ordered to keep
dependent iterations of SpTRSV and consecutive iterations SpMV next to each other.

CHAPTER 5. SPARSE FUSION 71

Table 5.1: The list of sparse matrices.

ID Name Nonzeros ID Name Nonzeros
1 Flan_1565 117.4×106 5 Emilia_923 41×106

2 bone010 71.7×106 6 StocF-1465 21×106

3 Hook_149860.9×106 7 af_0_k101 17.6×106

4 af_shell10 52.3×106 8 ted_B_unscal 0.14×106

To use MSP on more than two loops, in lexicographical order, the first two loops
are fused with MSP. Then the remaining loops are added to the fused schedule, one
at a time. The DAG being added to the fused schedule will be the tail DAG. The
extension requires a strategy to select the most profitable loops to be fused which is
not explored here.

5.3 Experimental Results

We compare the performance of sparse fusion to MKL [192] and ParSy [28], two
state-of-the-art tools that accelerate individual sparse kernels, which we call unfused
implementations. Sparse fusion is also compared to three fused implementations
that we create. To our knowledge, sparse fusion is the first work that provides a
fused implementation of sparse kernels where at least one kernel has loop-carried
dependencies. For comparison, we also create three fused implementations of sparse
kernels by applying LBC, DAGP, and a wavefront technique to the joint DAG of
the two input sparse kernels and create a schedule for execution using the created
partitioning, the methods will be referred to as fused LBC, fused DAGP, and fused
wavefront in order.

Table 5.2: The list of kernel combinations. CD: loops with carried dependencies, SpIC0: Sparse
Incomplete Cholesky with zero fill-in, SpILU0: Sparse Incomplete LU with zero fill-in, DSCAL:
scaling rows and columns of a sparse matrix.

ID Kernel combination Operations Dependency DAGs Reuse Ratio
1 SpTRSV CSR - SpTRSV

CSR
x = L−1y, z =
L−1x

CD - CD 2n+2sizeL
max(2n+sizeL,sizeL+2n) ≥ 1

2 SpMV CSR - SpTRSV
CSR

y = Ax, z = L−1y Parallel - CD 2n
max(2n+sizeL,sizeA+2n) < 1

3 DSCAL CSR - SpILU0
CSR

LU ≈ DADT Parallel - CD 2sizeA
max(sizeA,sizeA+2n) ≥ 1

4 SpTRSV CSR - SpMV
CSC

y = L−1x, z = Ay CD - Parallel 2n
max(2n+sizeL,sizeA+2n) < 1

5 SpIC0 CSC - SpTRSV
CSC

LLT ≈ A, y =
L−1x

CD - CD 2sizeL
max(sizeL,sizeL+2n) ≥ 1

6 SpILU0 CSR - SpTRSV
CSR

LU ≈ A, y =
L−1x

CD - CD 2sizeA
max(sizeA,sizeL+2n) ≥ 1

7 DSCAL CSC - SpIC0 CSC LLT ≈ DADT Parallel - CD 2sizeL
max(sizeL,sizeL+2n) ≥ 1

CHAPTER 5. SPARSE FUSION 72

Setup. The set of symmetric positive definite matrices listed in Table 5.1 are used
for experimental results. The matrices are from [41] and with real values in double
precision. The test-bed architecture is a multicore processor with 12 cores described
as Haswell-EP in Table 2.13. All generated codes, implementations of different ap-
proaches, and library drivers are compiled with GCC v.7.2.0 compiler and with the
-O3 flag. Matrices are first reordered with METIS [103] to improve parallelism.

We compare sparse fusion with two unfused implementations where each kernel is
optimized separately: I. ParSy applies LBC to DAGs that have edges. For parallel
loops, the method runs all iterations in parallel. LBC is developed for L-factors [37]
or chordal DAGs. Thus, we make DAGs chordal before using LBC. II. MKL uses
Intel MKL [192] routines with MKL 2019.3.199 and calls them separately for each
kernel.

Sparse fusion is also compared to three fused approaches all of which take as input
the joint DAG ; the joint DAG is created from combining the DAGs of the input kernels
using the inter-DAG dependency matrix F . We then implement three approaches to
build the fused schedule from the joint DAG: I. Fused wavefront traverses the joint
DAG in topological order and builds a list of wavefronts that represent vertices of both
DAGs that can run in parallel. II. Fused LBC applies the LBC algorithm to the joint
DAG and creates a set of s-partitions each composed of independent w-partitions.
Then the s-partitions are executed sequentially and w-partitions inside an s-partition
are executed in parallel. LBC is taken from ParSy and its parameters are tuned for
best performance. The joint DAG is first made chordal and then passed to LBC.
III. Fused DAGP applies the DAGP partitioning algorithm to the joint DAG and
then executes all independent partitions that are in the same wavefront in parallel.
DAGP is used with METIS for its initial partitioning, with one run (runs=1) and the
remaining parameters are set to default.

The list of sparse kernel combinations investigated are in Table 5.2. To demon-
strate sparse fusion’s capabilities, the sparse kernels are selected with different com-
binations of storage formats, i.e. CSR and compressed sparse column (CSC) storage,
different combinations of parallel loops and loops with carried dependencies, and a
variety of memory access pattern behaviour. For example, combinations of SpTRSV,
Lx = b and SpMV are main bottlenecks in conjugate gradient methods [203, 18],
GMRES [30], Gauss-Seidel [152]. Preconditioned Krylov methods [78] and Newton
solvers [168] frequently use kernel combinations 3, 5, 6, 7. The s-step Krylov solvers
[24] and s-step optimization methods used in machine learning [168] provide even
more opportunities to interleave iterations. Thus, they use these kernel combinations

3Results for the Skylake processor in Table 2.1 with 24 cores are shown in Section A.2.

CHAPTER 5. SPARSE FUSION 73

L 1L 1 * b
CSR-CSR

L 1 * (A * x)
CSR-CSR

LU DADT

CSR-CSR
A * (L 1 * x)
CSR-CSC

(LLT) 1 * b
CSC-CSC

(LU) 1 * b
CSR-CSR

LLT DADT

CSC-CSC

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

8

Se
qu

en
tia

l T
im

e
/ I

m
pl

em
en

ta
tio

n
Ti

m
e

ParSy Sparse Fusion MKL Fused Wavefront Fused LBC Fused DAGP

Figure 5.6: Performance of different implementations shown with speedup from dividing baseline
time by implementation time.

significantly more than their classic formulations.

Table 5.3: The achieved GFLOP/s for the baseline code for the kernel combinations in Table 5.2
and for matrices in Table 5.1.

Kernel Combination ID
Matrix ID 1 2 3 4 5 6 7

1 1.52 1.54 0.45 1.55 0.61 0.43 0.61
2 1.5 1.54 0.45 1.54 0.61 0.45 0.61
3 1.4 1.45 0.47 1.45 0.48 0.50 0.47
4 1.47 1.48 0.72 1.49 0.50 0.77 0.47
5 1.42 1.47 0.45 1.47 0.51 0.46 0.49
6 0.91 1.14 0.17 1.14 0.33 0.18 0.32
7 1.47 1.50 0.73 1.49 0.49 0.77 0.48
8 1.41 1.70 0.89 1.70 0.44 0.76 0.42

Sparse Fusion’s Performance. Figure 5.6 shows the performance of the fused
code from sparse fusion, the unfused implementation from ParSy and MKL, and
the fused wavefront, fused LBC, and fused DAGP implementations. All execution
times are normalized over a baseline. The baseline is obtained by running each kernel
individually with a sequential implementation. The floating point operations per
second (FLOP/s) for each implementation can be obtained by multiplying the baseline
FLOP/s from Table 5.3 with the speedups in Figure 5.6. The sparse fusion’s fused
code is on average 1.6× faster than ParSy’s executor code and 5.1× faster than MKL
across all kernel combinations. Even though sparse fusion is on average 11.5× faster
than MKL for ILU0-TRSV, since ILU0 only has a sequential implementation in MKL,
the speedup of this kernel combination is excluded from the average speedups. The
fused code from sparse fusion is on average 2.5×, 5.1×, and 7.2× faster than in order
fused wavefront, fused LBC, and fused DAGP. Obtained speedups of sparse fusion
over ParSy (the fastest unfused implementation) for SpILU0-SpTRSV and SpIC0-

CHAPTER 5. SPARSE FUSION 74

L
1 L

1 * b

LU
DAD

T

(LLT) 1 * b

(LU) 1 * b

LLT DAD
T

0

1

2

3

4

5

Int
er

lea
ve

d
Tim

e /
 S

ep
ar

at
ed

 Ti
m

e

100.0%

75.0% 100.0% 62.5%
100.0%

Reuse Ratio r 1

L
1 * (A * x)

A * (L
1 * x)

0

1

2

3

4

5

Se
pa

ra
te

d
Ti

m
e

/ I
nt

er
le

av
ed

 T
im

e

100.0%

75.0%

Reuse Ratio < 1

Figure 5.7: The range of speedup for all matrices achieved as a result of using interleaved packing
vs. separated packing. The labels on bars show how often the choice of packing strategy made by
sparse fusion leads to performance improvement.

SpTRSV is lower than other kernel combinations. Because SpIC0 and SpILU0 have
a high execution time, when combined with others sparse kernels with a noticeably
lower execution time, the realized speedup from fusion will not be significant.
Locality in Sparse Fusion. Figure 5.7 shows the efficiency of the two packing
strategies to improve locality. The effect of the packing strategy is shown for kernel
combinations with a reuse ratio smaller and larger than one as shown in Table 5.2.
Kernel combinations 1, 3, 5, 6, and 7 share the sparse matrix L and thus have a reuse
ratio larger than one while combination 2 and 4 only share vector y leading to a reuse
ratio lower than one. Figure 5.7 shows the range of speedup over all matrices for the
selected packing strategy versus the other other packing method for each combination.
As shown, the selected packing strategy in sparse fusion improves the performance in
88% of kernel combinations and matrices and provides 1-3.9× improvement in both
categories.

Figure 5.8 shows the average memory access latency [85] of sparse fusion, the fastest
unfused implementation (ParSy), and the fastest fused partitioning-based implemen-
tation (Fused LBC) for all kernel combinations normalized over the ParSy average
memory access latency (shown for matrix bone010 as example, other matrices exhibit
similar behavior). The average memory access latency is used as a proxy for locality
and is computed using the number of accesses to L1, LLC, and TLB measured with
PAPI performance counters [180].

For kernels 1, 3, 5, 6, and 7 where the reuse ratio is larger than one, the memory
access latency of ParSy is on average 1.3× larger than that of sparse fusion. Because
of their high reuse ratio, these kernels benefit from optimizing locality between ker-
nels made possible via interleaved packing. ParSy optimizes locality in each kernel

CHAPTER 5. SPARSE FUSION 75

L
1 L

1 * b

L
1 * (A * x)

LU
DAD

T

A * (L
1 * x)

(LLT) 1 * b

(LU) 1 * b

LLT DAD
T

0.5

1.0

1.5

2.0

2.5

Pa
rS

y
/ I

m
pl

em
en

ta
tio

n

Sparse Fusion Average Memory Latency
Fused LBC Average Memory Latency

Sparse Fusion Potential Gain
Fused LBC Potential Gain

Figure 5.8: Average memory access time and the OpenMP potential gain for matrix bone010. The
legends show the implementation, values are normalized over ParSy.

individually. When applied to the joint DAG, LBC can potentially improve the tem-
poral locality between kernels and thus there is only a small gap between the memory
access latency of sparse fusion and that of fused LBC. For kernels 2 and 4 where the
reuse ratio is smaller than one, the gap between the memory access latency of sparse
fusion and fused LBC is larger than the gap between the memory access latency of
sparse fusion and ParSy. Sparse fusion and ParSy both improve data locality within
each kernel for these kernel combinations.
Load Balance and Synchronization in Sparse Fusion. Figure 5.8 shows the
OpenMP potential gain [165] of sparse fusion, ParSy, and Fused LBC for all kernel
combinations normalized over ParSy’s potential gain (shown for matrix bone010 as
example, but all other matrices in Table 5.1 follow similar behavior.) The OpenMP
potential gain is a metric in Vtune [205] that shows the total parallelism overhead, e.g.
wait-time due to load imbalance and synchronization overhead, divided by the number
of threads. This metric is used to measure the load imbalance and synchronization
overhead in ParSy, fused LBC, and sparse fusion.

Kernel combinations 2 and 4 have slack vertices that provide opportunities to
balance workloads. For example, for matrices shown in Table 5.1, between 35-76%
vertices can be slacked thus the potential gain balance of ParSy is 1.6× larger than
sparse fusion and 2.4× lower than fused LBC. ParSy can only improve load balance
using the workloads of an individual kernel. As shown in Figure 5.1, for the kernel
combination 5, the joint DAG has a small number of parallel iterations in final wave-
fronts that makes the final s-partitions of the LBC fused implementation imbalanced
(a similar trend exists for kernel combination 6). For these kernel combinations, the
code from sparse fusion has on average 33% fewer synchronization barriers compared
to ParSy due to merging. For kernel combinations 1, 2, 3, 4, and 7 the potential gain

CHAPTER 5. SPARSE FUSION 76

L 1L 1 * b LU DADT A * (L 1 * x) (LLT) 1 * b
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

5
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

Nu
m

be
r o

f E
xe

cu
to

r R
un

s ParSy Sparse Fusion Fused Wavefront Fused LBC Fused DAGP

Figure 5.9: The number of executor runs to amortize inspector cost. Values are clipped between -5
and 80. (lower is better)

in sparse fusion is 1.3× less than that of ParSy. Merging in sparse fusion reduces the
number of synchronizations in the fused code on average 50% compared to that of
ParSy.
Inspector Time. Figure 5.9 shows the number of times that the executor should
run to amortize the cost of inspection for implementations that have an inspector.
For space only combinations 1, 3, 4, and 5 are shown, others follow the same trend.
The number of executor runs (NER) that amortize the cost of inspector for an im-
plementation is calculated using

Inspector T ime
Baseline T ime− Executor T ime

. The baseline time is obtained by running each kernel indi-
vidually with a sequential implementation, the inspector and executor times belong
to the specific implementation. The fused LBC implementation has a NER of 3.1-745.
The high inspection time is because of the high cost of converting the joint DAG into a
chordal DAG, typically consuming 64% of its inspection time. The NER of the fused
DAGP implementation is either negative or higher than 80. The fused wavefront
implementation sometimes has a negative NER because the executor time is slower
than the baseline time. As shown, sparse fusion and fused wavefront have the low-
est NER amongst all implementations. Sparse fusion’s low inspection time is due to
pairing strategies that enable partitioning one DAG at a time. Kernel combinations
such as, SpIC0-TRSV and SpILU0-TRSV only need one iteration to amortize the
inspection time and SpTRSV-SpMV, SpTRSV-SptRSV, and SpMV-SpTRSV need
between 11-50 iterations. Sparse kernel combinations are routinely used in iterative
solvers in scientific applications. Even with preconditioning, these solvers typically
converge to an accurate solution after ten of thousands of iterations [18, 106, 136],
hence amortizing the overhead of inspection.

CHAPTER 5. SPARSE FUSION 77

5.4 Related work

A number of libraries and inspector-executor frameworks provide parallel implemen-
tations of fused sparse kernels with no loop-carried dependencies such as, two or more
SpMV kernels [91, 123, 128, 4, 151] or SpMV and dot products [203, 43, 4, 65, 3, 151].
The formulation of s-step Krylov solvers [24] has enabled iterations of iterative solvers
to be interleaved and hence multiple SpMV kernels are optimized simultaneously via
replicating computations to minimize communication costs [91, 123, 128, 168]. Sparse
tiling [171, 108, 176, 172, 173] is an inspector executor approach that uses manually
written inspectors [171, 173] to group iteration of different loops of a specific ker-
nel such as Gauss-Seidel [173] and Moldyn [171] and is generalized for parallel loops
without loop-carried dependencies [176, 108]. Sparse fusion optimizes combinations
of sparse kernels where at least one of the kernels has loop-carried dependencies.

Chapter 6

Adaptive Sparsity Pattern in
Quadratic Programming

Sympiler generates optimized and parallel code for a kernel or a combination of two
sparse kernels as discussed in Chapters 3-5. However, the sparsity structures in phys-
ical simulations and numerical optimization alter with typically small and infrequent
changes and often affect a few rows or columns of the matrix. Also, typically the
domain experts and operators have a priori knowledge of the pattern changes. For
example, in minimizing a quadratic objective with linear constraints, i.e., quadratic
programming, in each iteration the sparsity pattern of the linear system changes, with
the changes being determined by the constraint set which is known prior to solving.
Solving the linear system from scratch would make the algorithm take a very long
time and often not scalable. In this chapter, an indefinite solver and an update/down-
date technique, SoMod are presented that enable Sympiler to reuse information from
previous solves to improve the runtime. The application of SoMod in an active-set
QP solver, called NASOQ is tested and compared with other QP solvers. The content
of this chapter is published in [30].

6.1 Introduction

Solving a quadratic program (QP) is a core numerical task critical in domains span-
ning geometry processing [202, 177, 53], animation [95, 149], physical simulation [17,
56, 15, 178], robotics [135], machine learning [9, 1], engineering, and design [58]. Un-
fortunately, available QP solvers are often neither accurate nor robust enough for
many applications [104, 201, 164, 199, 202], necessitating heuristics, approximations
and/or multiple failsafe backups to succeed.

A long-standing challenge then has been to provide a single, unified QP solver

78

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 79

that is 1) accurate, 2) efficient, and 3) scalable. By accurate we mean that the QP
solver converges to all reasonable requested accuracies; by efficient we mean that
it converges rapidly in wall-clock time; and by scalable we mean that it efficiently
converges across both large- and small-sized QP instances. As we show in Section
6.5, available QP solver libraries generally succeed for some subsets of QPs, while
often failing or becoming impractically slow to achieve success for others. To make
matters worse, in many cases, given the algorithms employed, it is not possible to
predict in advance when a QP method will succeed or fail per QP problem instance
[201].

The key challenge for solving a QP is in identifying an active set [59]. An active
set is a subset of a QP’s linear inequality constraints that are treated as equalities at
optimality. All other inequalities can then effectively be safely ignored. If an active
set is found, a QP problem instance then reduces to solving a much easier QP subject
to just its active constraints set as equalities.

Algorithms for solving large-scale QPs generally treat the entire constraint set as
approximately “active” with barrier terms penalizing all constraint violations simul-
taneously. This allows the application of large-scale, general-purpose sparse linear
solvers, but generally comes at the cost of uncertainty in the active set and degraded
solution accuracy. On the other hand, to address accuracy, many other QP algorithms
employ active-set methods. These are a range of methods that iteratively explore and
test active-set proposals. Details vary across methods but in all cases each iteration
requires solving large numbers of reduced QPs. Each reduced QP is solved subject
to a different set of proposed active constraints treated as equalities. In turn, solv-
ing these many reduced QPs accurately and efficiently is the computational crux of
active-set methods. This amounts to solving at each instance an indefinite linear sys-
tem for equality constrained optimality conditions – a Karush-Kuhn-Tucker (KKT)
system [23, 59]. Current solutions employed rely either on accurate linear solvers
that work well for small systems but are too expensive for repeated solves of new
large, sparse problems, or else rely on less expensive but also less accurate methods
for solving linear systems that once again unacceptably reduce accuracy [170].

To address these issues we construct the Numerically Accurate Sparsity-Oriented
QP Solver (NASOQ), a new, general-purpose, active-set algorithm for the accurate,
efficient, and scalable solution of QPs. NASOQ is built upon three core contributions:

• LBL: a new LDL factorization algorithm for the fast, accurate factorization and
update of sparse symmetric indefinite systems including those that arise in KKT
problems;

• SoMod: a new sparsity-oriented row modification method that enables fast fac-

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 80

torization for KKT matrix changes via efficient updates of previously computed
factors; and

• Two new QP solvers that extend the Goldfarb-Idnani (GI) active-set strategy
[70] by application of LBL and SoMod to enable user-exposed trade-offs between
speed and accuracy for large and sparse QP problems.

SoMod is a new algorithm designed to enable the rapid and accurate solutions
of the many successively-updated KKT systems encountered during active-set QP
solves. At start of QP solves, SoMod performs an initial symbolic analysis of a KKT
system containing all constraints, then utilizes this information for both the initial
factorization (which includes only the equality constraints) as well as subsequent
factorizations (which include proposed active sets). By precomputing symbolic in-
formation, SoMod enables efficiently updating the factorization when constraints are
added or removed from the proposed active set.

To compute each initial indefinite factorization for SoMod, we construct LBL, a
novel implementation of the LDL factorization using Load-Balanced Level Coars-
ening [28] for parallelization. LBL provides state-of-the-art performance for solving
indefinite KKT systems while enabling precomputation of the required symbolic anal-
ysis for subsequent factorization updates.

With these building blocks in place we construct and analyze NASOQ via a pair of
new active-set QP algorithms. To consistently evaluate NASOQ with both prior and
future QP methods we also introduce a new benchmark set composed of both practi-
cal, real-world stress-test QPs taken from a wide range of geometry, simulation, and
design applications as well as prior QP benchmarks [121, 95, 194, 160, 109, 96]. As
we demonstrate in Section 6.5, across a range of requested accuracies in this bench-
mark NASOQ obtains consistent accuracy by converging for 99.5% of benchmark
problems while the best convergence across competing state-of-the-art solvers is 94%.
At the same time NASOQ remains most efficient by providing an average speedup
of 1.7×–24.8× across requested accuracy ranges compared to the fastest competing
times across compared QP solvers. Please see Section 6.5 for details of our analysis.

6.2 Problem Statement and Preliminaries

We focus on the solution of convex quadratic programming problems to find the
linearly constrained minimizers of quadratic energies. In full generality our problem

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 81

then is

min
x

1

2
xTHx+ qTx s.t. Ax = b, Cx ≤ d (6.1)

where the unknown minimizer x ∈ Rn is constrained by linear equality constraints
Ax = b and inequality constraints Cx ≤ d. Note that in many cases we may have
only inequality or equality constraints. However, in the following, without loss of
generality, we consider the full mixed case. Here the symmetric matrix H is, either
by construction or standard user regularization [154, 71], a positive-definite matrix.
The QP in (6.1) is then strictly convex. In applications, the matrices H, A, and C
are often large and sparse. By sparse we mean that the majority of matrix entries
are zero, e.g., we have an average of 98% zero entries in our benchmark examples.

Unlike the solution of symmetric linear systems (or equivalently, unconstrained
quadratic energies) the optimality conditions, and thus the accuracy of a QP solution,
are much more complex to evaluate. Optimality of (6.1) is given by the specialized
Karush-Kuhn-Tucker (KKT) conditions1 [196, 59]

Hx+ q + ATy + CT z = 0

Ax− b = 0

0 ≤ z ⊥ d− Cx ≥ 0.

(6.2)

where y and z are the QP problem’s Lagrange multipliers [196].

6.2.1 Accuracy

Applications require controllable quality and thus controllable accuracy for solutions
to the QP problem. The accuracy of a QP solution is evaluated by reduction of four
corresponding measures2

Primal-feasibility: ‖
(

(Ax− b)T , (max(0, Cx− d))T
)T
‖ < εf , (6.3)

Stationarity: ‖Hx+ q + ATy + CT z‖ < εs, (6.4)

Complementarity: ‖z � (Cx− d)‖ < εc, (6.5)

Non-negativity: ‖min(0, z)‖ < εn. (6.6)

In the following we design NASOQ and analyze QP methods on their ability to
drive all four of these measures (∞-norm) below a common, maximum error threshold
accuracy: ε ≥ max(εf , εs, εc, εn). While necessary accuracies for each of the four

1Here x ⊥ y is the complementarity condition xiyi = 0, ∀ corresponding entries i in vectors x and y.
2Here � is the Hadamard (element-wise) product.

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 82

measures certainly change per application, a desirable goal for a general-purpose
QP algorithm is to solve every reasonable problem to any requested accuracy. Here
we design for general-purpose QP problems and so do not predict a priori what
measures are most important. Thus we evaluate fitness by asking each solve to drive
all measures below ε.

Primal-feasibility measures constraint satisfaction. Applying the ∞-norm gives
the worst violation of the enforced constraints by a given solution. In many appli-
cations constraints are invariants that need to be satisfied such as positive volume,
non-penetration, or structural feasibility. Errors in constraint satisfaction lead to
unacceptable failures and constraint drift in applications that depend on constraint
resolution at each call of a QP solve.

Stationarity measures the balance between energy and constraint gradients. This
is critical for stable and accurate solutions. For example, in structural engineering ap-
plications stationarity measures how well force balance is modeled, while in dynamic
simulations stationarity measures how well the equations of motion are satisfied. In
many applications even small residuals of stationarity with respect to measured di-
mensions of the systems can lead to simulation instabilities and blow-ups and/or
unacceptable modeling errors for engineering applications.

Complementarity measures the pairwise products of dual variables and their cor-
responding inequality constraints and is critical for correctly capturing active sets.
For example, in multi-body simulations [56, 90] dual variables often represent con-
tact forces while constraints model intersections. Complementarity then encodes the
property that contact forces cannot be applied unless objects are touching. Large
violations of complementarity can create instabilities and visual artifacts of floating
bodies with contact forces artificially applying action at a distance.

Non-negativity then ensures that dual variables are positive. Negative dual vari-
ables likewise have serious consequences for stability and quality in applications.
Consider, for example, bounded biharmonic weights for deformation skinning are
computed via QP solves [95] with resultant weights requiring non-negativity; while
similarly for contact problems negative dual variables indicate an unacceptable vi-
olation of the “no-velcro” condition – that contact forces should push but not pull
[164].

6.2.2 Active-Set KKT System Solutions

We focus on enabling scalable, efficient, and accurate solutions for QPs at all scales.
For a given input QP we seek an as-efficient-as-possible solver that will obtain a
user-requested accuracy. While state-of-the-art barrier and first-order QP methods

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 83

Algorithm 4: Dual-feasible active-set QP solver.
Data: H, q, A, b, C, d
Result: x, y, z
/* Feasibility phase */

1 Initialize z0 = 0; k = 0; active-set=∅;
2 Solve Equation 6.7 to initialize x0, y0;

/* Optimality phase */
3 while xk is not primal-feasible do
4 Solve Equation 6.8 to compute descent ∆x,∆y,∆z;
5 Compute the step length t;
6 if t = ∞ then
7 Problem is unbounded.;
8 else
9 Update xk+1, yk+1, zk+1 with ∆x,∆y,∆z;

10 Update the active set;
11 Update the KKT system with the updated active set;
12 end
13 k = k + 1 ;
14 end
15 xk, yk, zk are optimal;

are promising for scaling to large QP problems, their solutions suffer from degraded
accuracy [170] and no general method exists for determining a priori when they will
succeed or fail in reaching the requested accuracy [22]. On the other end of the spec-
trum, active-set QP methods provide high-accuracy QP solutions. However, in order
for active-set QP algorithms to reach a targeted accuracy they must also accurately
solve a large number of successive indefinite linear systems visited by the algorithm
at each inner iteration, which can be computationally expensive.

Active-set methods start with a feasible solution and keep a running set of proposed
active inequality constraints W to reach the optimal solution while maintaining fea-
sibility conditions. Active-set methods are then either primal-feasible, preserving the
primal-feasibility condition or else are dual-feasible, preserving the non-negativity
condition. Here we focus on the Goldfarb-Idnani (GI) [70] strategy. GI is a dual-
feasible active-set approach and so enables direct and inexpensive initialization [196].

The high-level pseudocode for the GI algorithm is shown in Algorithm 4. The GI
algorithm begins (lines 1–2) by initializing an empty active-set proposal, W = ∅ with
zero dual variables, z0 = 0. The resulting initial KKT system to solve is then the
indefinite linear system, [

H AT

A 0

][
x0

y0

]
=

[
-q
b

]
(6.7)

which corresponds to solving a feasible QP with just equality constraints applied.
Then, each successive iteration of the GI method (lines 3–14, Algorithm 1) im-

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 84

proves the last iterate’s solution by updating the active-set proposal W and so the
corresponding active-set constraint matrix CW and the right-hand side constraint vec-
tor cw. The GI method updates the active set by only adding one or removing one
constraint in each successive iteration. Here w is the activated constraint.

The next descent direction for the QP is then determined by solving the updated
KKT system H AT CT

W
A 0 0

CW 0 0

∆x

∆y

∆z

 =

cw0
0

 (6.8)

The dual and primal variables of the next iteration are then updated by finding step
lengths along the computed descent directions. The step lengths ensure that the acti-
vated constraint becomes primal-feasible and all dual variables remain dual-feasible.
Thus, in each iteration, both the dual and primal variables corresponding to the con-
straints in the active set are both non-negative and primal-feasible. Each iteration’s
linear solve of the updated indefinite KKT system in (6.8) becomes increasingly ex-
pensive as QP system sizes and constraint numbers grow. However, at the same time,
the GI algorithm requires accurate solutions for each of these successive KKT systems
for algorithmic stability and in order to consistently obtain accurate solutions for the
overall QP problem [143].

A key observation then is that each update to W and correspondingly to the
matrix in (6.8) is small and specifically requires the update of just a single row in
CW . Currently, active-set algorithms leverage this observation with indirect methods
[73] that solve the KKT system by adaptively updating it with respect to W via
the application of the QR decomposition and the Schur complement. While indirect
methods provide accurate and efficient KKT solutions at small scales, they are unable
to take advantage of sparsity. These methods suffer from extensive fill-in3 due to the
QR factorization and the Schur complement form and so do not scale due to slow
compute times and memory overhead for QP problems with large numbers of variables
and/or large numbers of constraints.

Alternately direct active-set QP methods form the KKT system explicitly and solve
it via direct or iterative linear solvers. Direct methods solve each iteration’s KKT
system via indefinite factorization methods [120] followed by a solve stage. This
leads to accurate and scalable solutions but is inefficient due to the repeated cost
of recomputing factorizations. Application of iterative methods, e.g., Krylov sub-
space methods [74], in place of direct solves are not typically performed as it remains
challenging to find effective, general-purpose preconditioners for KKT matrices with

3Fill-ins are additional nonzeros created in the factor during a matrix factorization.

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 85

generic active sets [120]. Re-purposing prior factorizations to compute the solution of
a modified KKT system is thus a highly attractive direction for combined efficiency
and accuracy. However, to our knowledge, no previous solution for indefinite matrix
factorization updates exists. The closest possible option we find is CHOLMOD row
modification [40], which is an efficient and effective solution designed for symmetric
positive definite (SPD) matrices but does not provide accurate and stable solution
updates for indefinite KKT systems.

In this dissertation, we focus on enabling accurate, scalable, and efficient QP
solutions by taking advantage of sparsity and by efficiently updating factorizations
of the active-set method’s indefinite KKT system. In doing so we address the gap
between direct and indirect methods. We develop NASOQ to combine the advantages
of leveraging direct, accurate solutions of KKT systems with the small and localized
updates of subsequent KKT systems. NASOQ leverages our new SoMod method
which enables efficient, sparsity preserving updates of existing factorizations after each
new constraint update to W and, as we show in Section 6.5, enables the application
of accurate direct factorization methods across a wide range of large- and small-scale
QP problems not previously possible.

6.3 SoMod: Sparsity-oriented row modification

A scalable solution to a dual-feasible active-set QP requires an efficient solution to
the successive KKT systems in Equations 6.7 and 6.8. This section discusses SoMod,
a novel method for efficiently solving these KKT systems using the combination of
a novel sparsity-oriented row modification method, a novel implementation of LDL
factorization, and an efficient triangular solve. SoMod consists of two phases: an
initialization phase associated with Equation 6.7 and a factor modification phase
associated with Equation 6.8. In both phases, SoMod solves Kx = s for x where s
is a dense vector and K is a sparse symmetric indefinite KKT matrix. At the start
of each QP solve we initialize the KKT matrix with the subsystem corresponding to
applying just the equality constraints, so that:

K =

[
H AT

A 0

]
(6.9)

where H and A are respectively the matrices for the quadratic objective and equality
constraints. In order to solve the system Kx = s, SoMod applies LDL factorization

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 86

1
2
3
4
5
6
7
8

H• • •
• •
• •

• • •
• • •
• •
• •
• • •
A

1
2

• •
•

1
2
3
4

C• • •
• •
• •

• • • • • •
1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

K• • • •
• • • • •
• • • •

• • • • • • •
• • • • •
• • • •
• • • •
• • •
• •

•
• • •
• •
• •

• • • • • •
1

(a) Sparse matrices in Equation 6.1 (b) Inclusive matrix (Hinc)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

L•
•

•
• • • •

•
•
• •

•
• •

•
• • • •

• • • • •
• • • • • • • • •

• • • • • • • •
1 2 3 4 5 6 7 8 9 10

1

12

3

4

5

67

8

9

10

1

(c) L-factor of K (d) Inclusive assembly tree (πinc)

Figure 6.1: The symbolic initialization phase of SoMod starts with creating an inclusive matrix,
shown in Figure 6.1b from the matrices in Figure 6.1a which are inputs to the QP problem in
Equation 6.1. The inclusive matrix is then permuted with a fill-reducing permutation to compute
the sparsity pattern of the L-factor with minimum number of fill-ins. The sparsity pattern of the
L-factor of the inclusive matrix in Figure 6.1b is computed and shown in Figure 6.1c. Bound-
aries of Supernodes are shown with dotted lines and supernode numbers are illustrated below the
L-factor. The corresponding inclusive (assembly) tree of the L-factor in Figure 6.1c is shown in
Figure 6.1d. The colored nodes correspond to the inequality constraint rows (matrix C in Fig-
ure 6.1a). The constraint-aware supernode creation strategy ensures that supernodes corresponding
to the inequality constraint nodes contain only a single column. The colored nodes of the inclusive
tree are removed to create the pruned inclusive tree passed to numerical factorization along with
the L-factor in Figure 6.1c.

to decompose the matrix K into

K = PfillPS(LDLT + E)P T
S P

T
fill (6.10)

where D is a blocked diagonal symmetric matrix (due to our use of Bunch-Kaufman
pivoting [154]), L is a sparse lower triangular matrix, E is the error due to a diagonal
perturbation matrix added to K(necessary to avoid zero diagonals, which can cause
instabilities [154, 92]), Pfill is a fill-reducing ordering (such as METIS [101]), and PS
is reordering due to pivoting. Given this factorization of the matrix, SoMod then
uses L and D along with s (the right-hand side) to quickly compute the solution x

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 87

via triangular solve.
The overall process of the factorization in this initialization phase of SoMod closely

follows that of standard sparse linear system solvers. For efficient factorization, the
sparsity pattern of K is analyzed during symbolic analysis. Symbolic analysis uses
the sparsity pattern of K to construct symbolic information, which consists of the fill-
reducing ordering Pfill and the sparsity pattern of L. Symbolic information guides the
numeric factorization, which operates on the actual numeric values of K to compute
the nonzero values of L and D. Unlike prior work, SoMod applies symbolic analysis
in a way that allows the results to be reused during the modification phase. The
initialization phase also includes permutation with Pfill, constraint-aware super-node
creation, perturbation with E, and a restricted pivoting strategy with PS; all of these
steps are described in Section 6.3.1.

The modification phase in SoMod, described in Section 6.3.2, iteratively solves
each new, updated KKT system which contains additional active constraints. During
this phase, SoMod solves Kx = s for each updated K:

K =

 H AT CTW
A 0 0

CW 0 0.

 (6.11)

Here, for each update, Cw contains rows from the full constraint matrix corresponding
to the current proposed active constraint set. Rather than solving each of these
systems from scratch, SoMod updates the starting solution in our initialization phase
using factor modification. Specifically, SoMod updates the symbolic information from
the initialization phase, followed by updating the numeric L-factor to account for the
added/removed constraints in each iteration. Then, a triangular solve is once again
used to find x given the updated L and D matrices.

6.3.1 Initialization Phase

In SoMod, the initialization phase produces symbolic information that can be reused
by subsequent factorizations in the factor modification phase. After producing sym-
bolic information, this phase then proceeds with numeric factorization, followed by
triangular solve to return the solution to the KKT system.

Symbolic Analysis with the Inclusive Matrix

The initialization phase first builds an inclusive matrix. Then, we permute the in-
clusive matrix and generate symbolic information, including the sparsity pattern of

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 88

the L-factor of the inclusive matrix, the assembly tree of the inclusive matrix (the
inclusive tree), a pruned inclusive tree, and Pfill in Equation 6.10. This symbolic in-
formation collectively facilitates an efficient numeric factorization in the initialization
phase and also provides symbolic information leveraged by the factor modification
stage.

The inclusive matrix, the sparsity of L, and the assembly tree An inclusive matrix
is first assembled using the objective and equality constraint matrices (H and A) and
the sparsity pattern of the inequality constraint matrix. That is, the inclusive matrix
includes all entries of C but with values set to zero. The numerical values of the
inequality constraint matrix will be added to the inclusive matrix during the modifi-
cation stage of SoMod when a constraint is added. Figure 6.1b shows an example of
an inclusive matrix created from the matrices in Figure 6.1a.

SoMod then builds an elimination tree [116, 37] for the inclusive matrix, which
enables obtaining the sparsity pattern of the L-factor and creating the inclusive as-
sembly tree. The elimination tree of the inclusive matrix is a tree that expresses
dependencies between operations on columns of the L-factor, dictating the order of
factorization. Because of fill-ins, the sparsity pattern of the L-factor is different from
that of the inclusive matrix. The number of fill-ins correlates with the number of op-
erations in the factorization process. Thus, after creating the inclusive matrix, it will
be permuted with Pfill, a fill-reducing ordering, which improves the speed of numeric
factorization by reducing the number of operations in the factorization process.

Finally, the inclusive elimination tree and the sparsity pattern of its L-factor are
used to create constraint-aware supernodes and the inclusive assembly tree, which
is the supernodal version of the inclusive elimination tree. Supernodes [37, 154] are
created by grouping columns with similar sparsity patterns if they form a chain in the
elimination tree; that is, two consecutive columns are grouped together if one column
is the only child of its next column. Thus each node in the assembly tree represents
a group of columns together in a supernode; a node in the elimination tree represents
just a single column. For example, the tree in Figure 6.1d is the assembly tree of the
supernodal L-factor in Figure 6.1c; each node of the tree corresponds to a supernode
and the numbers shown below the L-factor correspond to the supernode’s number in
the assembly tree. The parent of each node in the assembly tree is obtained using
the row index of the first off-diagonal nonzero of its corresponding supernode in the
L-factor. For example in Figure 6.1c, the row index of the first off-diagonal nonzero
of supernode 3 is 4 and thus node 4 is the parent of node 3 in Figure 6.1d.

Sparse factorization can be more efficient when operating on supernodes instead
of individual columns [26]. Supernode creation in SoMod is constraint-aware, so

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 89

rows/columns of C are not grouped with each other or with other columns; this
makes it possible to add or remove constraints separately from one another while still
allowing the rest of the assembly tree to benefit from the increased efficiency of the
supernodal approach. For example, in the inclusive tree in Figure 6.1d, column 14
can form a supernode with columns 12 and 13; however, since column 14 is the fourth
constraint in C, it is excluded from the supernode.

The pruned inclusive assembly tree The inclusive assembly tree contains dummy
entries for all inequality constraints. During this phase, and during row modifica-
tion, we instead use a pruned inclusive assembly tree that contains only the entries
corresponding to active inequality constraints; this is represented by an array of par-
ents, denoted with π. Thus, before performing the initial factorization, we remove all
dummy entries corresponding to inequality constraints. As an additional optimiza-
tion, SoMod also creates a visibility vector v that shows whether a column of the
L-factor should be visited during the initial numerical factorization phase; this infor-
mation is derived from the pruned assembly tree, but in practice using the visibility
vector can be faster than finding paths in the assembly tree. Because the initial KKT
matrix only includes equality constraints, the visibility vector is initialized by setting
all rows of the inclusive matrix that correspond to rows of C to invisible.

Constraint-aware supernode creation facilitates creating the pruned inclusive tree
by ensuring every row of matrix C corresponds to one node in the inclusive tree.
This allows removing rows by only changing the pruned inclusive tree as described in
Section 6.3.2.

Numeric Factorization with LBL

Numeric factorization computes the nonzero values of the L-factor in solving Equa-
tion 6.7 (line 2 of Algorithm 4) using LBL, a modified LDL factorization algorithm
that uses Load-Balanced Level Coarsening [28], a scheduling technique that improves
the performance of numeric factorization on parallel architectures. While prior work
applied Load-Balanced Level Coarsening to Cholesky factorization for symmetric pos-
itive definite matrices, LBL extends the technique to symmetric indefinite matrices
that arise from KKT problems.

Numeric factorization takes as input the sparsity pattern of the L-factor and the
visibility vector, and first computes the perturbation matrix (E in Equation 6.10),
using information from the inclusive matrix to enable a stable factorization. Pertur-
bation ensures no zeros exist in the diagonal entries of the matrix, since these lead
to division-by-zero during factorization. Numeric factorization then uses the pruned
inclusive assembly tree to determine an efficient and correct order of computation,

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 90

Algorithm 5: Blocked-diagonal LDL factorization. Matrices K, L, D, PS correspond
to Equation 6.10. super is a vector that shows the boundary of supernodes in L. M is a
set that shows the order of computation. Matrices L and D only have the sparsity pattern
for LBL and include the previous factor for row modification.
Data: K, L, D, super,M
Result: L, D, PS

1 for j ∈M do
2 b = superj
3 u = superj+1

4 L:,b:u = 0
5 T(:,:) = 0

/* Applying contributions from factorized supernodes in r */
6 for r ∈ L0:b,: do
7 T = T + Lb:n,r× Dr,r× LT

b:u,r

8 end
9 [Lb:u,b:u, Db:u,b:u, PSb:u,b:u] = LDL(K b:u,b:u- T b:u,:)

/* Applying column permutation */
10 L:,b:u = L:,b:u× PT

S b:u,b:u

11 Lu:n,b:u = (Lb:u,b:u ×Db:u,b:u)−1 × (Ku:n,b:u − Tu:n,:)
12 end

/* Applying row permutation */
13 L = PS × L

and then uses this schedule to compute the nonzero values of L, D, and PS in Equa-
tion 6.10.

Perturbation We add a small value to zero diagonals of the inclusive matrix that
correspond to rows of the equality constraints. Since the location of the equality
constraints are known in the inclusive matrix, SoMod computes the perturbation
matrix E :

Ei,i = diag_pert; n ≤ i ≤ n+m (6.12)

where n and m are the number of variables and constraints respectively. Matrix E
will be added to the inclusive matrix as shown in Equation 6.10.

Load-Balanced Level Coarsened scheduling Before performing the factorization, we
use Load-Balanced Level Coarsening to compute the order of factorization using the
pruned inclusive assembly tree. This scheduling algorithm provides a partitioning
of the tree that groups supernodes into partitions that can execute efficiently on a
parallel processor while preserving ordering dependencies. For example, in the pruned
tree of Figure 6.1d, nodes 1, 3, and 6 can run in parallel, since none of them depend
on lower non-colored nodes in the tree.

LBL: parallel blocked-diagonal LDL factorization LBL is a parallel LDL factoriza-
tion method that takes the computed schedule from the Load-Balanced Level Coars-

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 91

ening algorithm, the visibility vector, and the sparsity pattern of the L-factor and
computes the nonzero values of the L and D factors of the perturbed KKT matrix of
the system in Equation 6.7 (line 2 in Algorithm 4). Pseudocode for LBL is shown in
Algorithm 5.

LBL uses a supernodal left-looking approach [37] (one of several ways to compute
LDL factorization), computing the supernodes of the L-factor using already factorized
supernodes to the left of the current supernode. The list of supernodes and the order
of computation are specified in super andM respectively. Each iteration of LBL first
accumulates contributions of supernodes to the left and stores them in temporary
matrix T. After deducting T from the current column (line 9), the algorithm first
factorizes the diagonal part of the current supernode using a dense LDL factorization
and then uses the computed factors to factorize the off-diagonal part of the current
column (line 11). The dense LDL factorization uses the Bunch-Kaufman algorithm,
which only reorders rows within a supernode of the L-factor. Thus, LBL pivoting is
restricted to rows within a supernode [154], which preserves the sparsity pattern of
the L-factor during factorization.

After pivoting, rows of the L-factor in supernodes to the left of the current supern-
ode must be permuted as well; were this done within the parallel region (lines 2–11),
it would introduce dependencies that would prevent efficient computation, render-
ing the Load-Balanced Level Coarsening schedule useless. Thus, unlike typical LDL
factorization methods, LBL separates row and column permutations, applying row
permutations after the factorization (line 13). After obtaining the factorization, So-
Mod then uses triangular solve to efficiently obtain a solution to the initial KKT
problem, as described in Section 6.3.3.

LBL thus works with the same base SBK algorithm as in MKL Pardiso [154].
However, LBL enables additional important features necessary for updates. The first
and most key feature is that LBL enables factor modification: when adding or remov-
ing a constraint from K, LBL modifies the factor as opposed to MKL Pardiso which
requires computing the factor from scratch. The second feature is LBL’s application
of a static scheduler [28] to schedule the computation to ensure load-balanced paral-
lelism while preserving locality. In contrast, MKL Pardiso utilizes dynamic scheduling
which optimizes solely for load-balanced execution, which results in suboptimal lo-
cality. To prevent dependencies due to pivoting in SBK that would limit parallelism,
LBL postpones row permutation to after numerical factorization.

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 92

Algorithm 6: Symbolic row removal algorithm. k is the node to remove. π is the
pruned inclusive assembly tree. v is the visibility vector. r is the list of root nodes. π−1(k)
returns the children list of node k.
Data: π, v, k, r
Result: π, v, r
/* Find the parent of deleting node k */

1 f = π(k)
/* Update all children of node k with its parent */

2 for j ∈ π−1(k) do
3 if v(j) then
4 π(j) = f
5 if k is a root node then
6 r = r

⋃
{j}

7 end
8 end
9 end

10 r = r − {k}
/* Update the visibility vector */

11 v(k)=false

6.3.2 Factor Modification

After the initialization phase, finding a solution to the QP problem requires solving
a large number of successive symmetric indefinite KKT systems. The factor mod-
ification phase in SoMod efficiently solves these successive systems by reusing the
computed factors from the initialization phase and modifying them based on whether
a new inequality constraint is added or removed. In contrast, the usual approach
would solve these systems from scratch, performing symbolic analysis and factoriza-
tion without reusing any previously-computed information.

Successive KKT matrices are created by adding or removing rows of matrix C
to/from the existing KKT system. To obtain the solution to the linear system in
Equation 6.8 (line 4 of Algorithm 4), SoMod first updates the symbolic information
and then the numeric factorization previously obtained from the initialization phase
or obtained from the previous iteration of the QP algorithm. It then uses the updated
L-factor and D to obtain a solution (Section 6.3.3). In this subsection we explain how
factor modification efficiently modifies the previously obtained symbolic information
and then uses the new symbolic information to update the existing numeric factors.

Symbolic Modification

The symbolic modification phase modifies the pruned inclusive assembly tree using
the full inclusive tree when row k of the inclusive matrix is modified. Depending on
whether the modification adds or removes a row, SoMod uses symbolic row removal
or addition algorithms to update the tree.

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 93

Algorithm 7: Symbolic row addition algorithm. k is the node added. π is the pruned
inclusive assembly tree. πinc is the inclusive assembly tree. v is the visibility vector. r is
the list of root nodes. ρinc(j) returns the list of ancestors of node j. π−1(f) returns the
children list of node f .
Data: π, πinc, v, r, k
Result: π, v, r
/* Find the first visible ancestor of k */

1 f = min {j|j ∈ ρinc(k) ∧ v(j)}
2 if f is a node then

/* Find all nodes that k is their least ancestor */
3 for j ∈ π−1(f) do
4 if k ∈ ρinc(j) then
5 π(j) = k
6 end
7 end
8 else

/* Look for any missing child in root nodes */
9 for j ∈ r do

10 if k ∈ ρinc(j) then
11 π(j) = k
12 r = r - {j}
13 end
14 end
15 r = r

⋃
k

16 end
/* Update the pruned inclusive assembly tree */

17 π(k) = f
18 v(k)=true

Row removal When a constraint is removed from the KKT matrix, SoMod up-
dates the pruned inclusive tree using the symbolic row removal algorithm shown in
Algorithm 6. To remove node k, the removal algorithm first finds its parent and then
assigns all children of node k to its parent. If node k is a root node and therefore
has no parent, we add its children to a list r which contains all root nodes. This list
is used in the row addition algorithm to facilitate the process of adding constraints
corresponding to such nodes. For example, Figure 6.2b shows a pruned inclusive as-
sembly tree with two already-added constraint rows 2 and 10 and Figure 6.2c shows
the pruned inclusive assembly tree after node 10 is removed. Node 9 then becomes a
root node, so Algorithm 6 adds it to r and removes 10 from r.

Row addition When row k is added to the KKT matrix, SoMod updates its sym-
bolic information and decides where to insert node k in the pruned inclusive assembly
tree. The algorithm first visits the tree to find the first visible ancestor of k. If there
is a first visible ancestor, the algorithm then finds the children of this closest ancestor
f in the pruned inclusive tree; the children are then visited to update any for which
k is the parent. If k does not have a first visible ancestor, the algorithm cannot use

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 94

1

3

46

8

9

1

12

3

46

8

9

10

1

12

3

46

8

9

1

(a) Pruned inclusive matrix (π0) (b) π1 (c) π2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

•
•

•
• • • •

•
• •

•
• •

• • •
• • • • • • •

• • • • • • •

L0

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

•
•

•
• • • •

•
•
• •

•
• •

• • • •
• • • • • • • •

• • • • • • • •

L1

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

•
•

•
• • • •

•
•
• •

•
• •

• • • •
• • • • • • • •

• • • • • • •

L2

1

(d) (e) (f)

Figure 6.2: Factor modification example starting with the pruned inclusive tree (Figure 6.2a) and
the L-factor (Figure 6.2d) that are computed in the initialization phase, in order, by removing all
nodes corresponding to the inequality matrix from the inclusive tree in Figure 6.1d and by hiding
all rows of the inequality matrix in the L-factor in Figure 6.1c. SoMod symbolically adds rows that
correspond to nodes 2 and 10 (rows 5 and 14, respectively) to the inclusive matrix using the row
addition algorithm, resulting in a new pruned inclusive tree shown in Figure 6.2b. The corresponding
supernodes in the L-factor in Figure 6.2e, shown in red, are also visible and will be updated using the
numerical modification algorithm. Figure 6.2c is the result of removing node 10 from Figure 6.2b by
using the symbolic row removal algorithm. Column 14 of the L-factor (which corresponds to node
10 in the tree) in Figure 6.2f becomes invisible after row removal.

its ancestor’s information to update the pruned inclusive tree and thus would need to
search for its children by considering all nodes of the inclusive tree. Instead, the algo-
rithm uses the list of root nodes from the node removal algorithm and only searches
in r. Algorithm 7 demonstrates the process of row addition. Figure 6.2a shows the
pruned inclusive tree with no constraints and Figure 6.2b shows the pruned inclusive
assembly tree after adding constraint rows 2 and 10. When adding node 2, Algo-
rithm 7 first finds its visible ancestor, node 9, and then updates the parent node with
9 since no child of node 9 belongs to node 2. Node 10 is a root node in the inclusive
tree in Figure 6.1d, thus the algorithm goes over the list of root nodes, which includes
9 as explained in the example in the row removal section. Since 9 is a child of 10 in
the inclusive tree, its parent will be updated with 10.

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 95

Numeric Modification

SoMod uses the updated pruned inclusive tree to update the numeric factorization of
the newly-modified KKT system by visiting only the columns that are dependent on
the modified row in the pruned inclusive assembly tree. Given the pruned inclusive
assembly tree of a linear system, solving the factorization after adding or removing a
row is similar to Algorithm 5. The only difference is how the inputM is computed.
Numeric modification only updates supernodes that are in ρ(k), which are the nodes
in an up-traversal starting from k. An up-traversal from a node visits all ancestors
of that node. For example, the up-traversal of node 2 in the tree of Figure 6.1d is {2,
9, 10}. For the node removal case, the symbolic row removal algorithm is called after
the numeric modification. This allows the modification algorithm to apply the effect
of removing the node before removing the necessary information from the symbolic
information; instead, the row is replaced with all zeros in order to update the numeric
factorization. For the node addition case, the symbolic row addition algorithm is
called before numeric modification, and the appropriate nonzeros are added to the
row. Calling Algorithm 7 before numeric modification allows the numeric modification
algorithm to utilize values of the added row during the L-factor update.

6.3.3 Triangular Solve and Accuracy Refinement

In both the initialization phase as well as the modification phase, once SoMod obtains
the newly-computed or updated numeric factors L and D, it uses them to solve
the linear system Kx = s. SoMod finds the solution vector x by doing a forward
triangular solve, a block-diagonal system solve, and a backward triangular solve as
shown in Equation 6.13. SoMod uses an efficient parallel triangular solve from [28] and
a simple single-threaded hand-written block-diagonal system solver for these steps.

b = (PfillPS)s

Lx1 = b

Dx2 = x1

LTx3 = x2

x = (PfillPS)−1x3

(6.13)

As shown in Equation 6.10 and discussed in Section 6.3.1, we add perturbation ma-
trix E to the KKT matrix prior to solving. As a result, the solution x contains
inaccuracies, necessitating an accuracy refinement strategy to obtain an acceptable
solution.

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 96

Algorithm 8: NASOQ: A dual-feasible full-space QP solver.
Data: H, q, A, b, C, d
Result: x, y, z
/* Feasibility phase */

1 LinearSolve SoMod(H,A,C);
2 z0 = 0; k = 0; active-set=∅; modify=ADD;
3 SoMod.symbolic_initialization();
4 SoMod.LBL(q, b);
5 [x0, y0] = SoMod.solve();

/* Optimality phase */
6 while xk is not primal-feasible do
7 w = most_violated(C, d, xk);
8 if modify == ADD then
9 SoMod.symbolic_row_addition(w);

10 SoMod.numerical_modification(w);
11 else
12 SoMod.numerical_modification(g);
13 SoMod.symbolic_row_removal(g);
14 end
15 [∆x,∆y,∆z]=SoMod.solve();
16 Compute the step length t;
17 if t = ∞ then
18 Problem is unbounded.;
19 else
20 Update xk+1, yk+1, zk+1 with ∆x,∆y,∆z;
21 Update the active set;
22 Add or remove a row to/from KKT;
23 Set g to removed constraint;
24 Set modify to either ADD or REMOVE;
25 end
26 k = k + 1 ;
27 end
28 xk, yk, zk are optimal;

Accuracy refinement It is standard practice to use an iterative method after a
direct solve to improve the accuracy of the solution [86, 156, 152, 11]. SoMod uses an
iterative method, right-preconditioned GMRES [152], to refine the obtained solution
from the solve phase. The GMRES algorithm is preconditioned with the output of
LDL factorization and performs up to max_iter iterations to achieve the requested
residual norm res_tol, but will terminate early if the required tolerance is achieved.

6.4 NASOQ: Numerically Accurate Sparsity-Oriented QP Solver

With our key innovation SoMod in place, we now can define our two closely-related
QP solution algorithms, NASOQ-Fixed and NASOQ-Tuned. Both methods integrate
SoMod row modification and LBL within the GI dual-feasible active-set framework

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 97

and so provide efficient, accurate, and sparsity-preserving full-space QP algorithms.
NASOQ-Fixed and NASOQ-Tuned both, as we show in Section 6.5, consistently im-
prove over state-of-the-art QP methods across our benchmark, while the two methods
each individually offer a different balance in the trade-off between efficiency and ac-
curacy for larger scale problems.

In this section we first highlight the changes applied by SoMod row modification
and LBL to the GI framework with NASOQ-Fixed and then, building off of this
baseline, discuss the NASOQ-Tuned method as a direct and natural extension of
NASOQ-Fixed.

Algorithm 8 summarizes our full NASOQ-Fixed algorithm in pseudocode. At each
update and solution of the new active-set KKT (previously lines 2 and 4 in Algorithm
1) NASOQ-Fixed now applies the SoMod solve phase via LBL and row modification.
This allows NASOQ-Fixed to replace the Cholesky and QR solves in the standard
GI method; this is the key difference between NASOQ and standard GI methods.
In addition, standard GI implementations require one additional iteration for each
equality constraint while NASOQ, due to its full-space approach, applies equality
constraints by solving the initial KKT system, see Equation (6.7).

Numerical optimization methods generally apply a wide diversity of empirically
tuned parameters [170, 133]. A key feature of NASOQ is that in our construction
of SoMod’s LBL and row modification we expose three parameters with direct and
intuitive interpretations that enable us to balance efficiency against accuracy for dif-
ferent applications and problem scales. With NASOQ-Fixed we demonstrate that
without tuning a default setting works well across the board. With NASOQ-Tuned
we similarly demonstrate that if a range of reasonable settings for these parameters
are a priori known, NASOQ’s active set approach enables a rapid sweep for improved
accuracy. These parameters are

• max_iter: the maximum number of refinement iterations for incrementally im-
proving the solution of a KKT system after the solve phase (see Section 6.3.3);

• stop_tol: the threshold defining the upper bound for the residual accuracy of
the KKT system during the refinement phase (see Section 6.3.3);

• diag_perturb: value added to zero-entry diagonals of the KKT matrix (see Sec-
tion 6.3.1) to stabilize LBL and row modification in SoMod.

Increasing max_iter and decreasing stop_tol generally improve accuracy at the cost
of more computation. Setting of diag_perturb then relates to problem conditioning
and machine accuracy; a typical value is near square root of machine precision [11].

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 98

6.4.1 NASOQ-Fixed

NASOQ-Fixed is a direct, one-shot application of our SoMod-enhanced GI approach.
Here we presume that, per-application, time is sufficient for a single QP solve, but no
further, and so seek the most effective values for given input QP characteristics.

NASOQ-Fixed sets diag_perturb and stop_tol to fixed values for all input QP
problems to 10−9 and 10−15 respectively. Here we find that adapting max_iter per
problem based on the requested accuracy ε is most effective (with the assumption
that we will only have a single attempt at the solve). When lower accuracy ε’s are
requested, NASOQ-Fixed applies fewer refinement iterations (lowering max_iter)
and then correspondingly increases max_iter to obtain more accurate linear solves
when higher accuracies are specified. Concretely, NASOQ-Fixed sets

max_iter =

1, ε > 10−4

2, 10−8 ≤ ε ≤ 10−4

3, ε < 10−8.

(6.14)

Finally, for very small QP problems, i.e., fewer than 100 nonzeros, NASOQ-Fixed
keeps max_iter = 3 as this does not impose an appreciable cost.

6.4.2 NASOQ-Tuned

NASOQ-Tuned leverages the underlying active-set framework. Active-set methods
terminate in bounded time with respect to number of constraints, and, in practice
generally much more rapidly than barrier and first-order approaches [197, 120]. Thus
the cost of running multiple passes of NASOQ to determine whether a chosen set-
ting for our three parameters successfully matches a requested accuracy is generally
acceptable when accuracy is critical and some efficiency can be sacrificed.

NASOQ-Tuned therefore sweeps through a set of empirically-determined param-
eter combinations, as found from testing solely against the subset (0.5%) of the QP
problem instances in the testing set (see Section 6.5.3) for which NASOQ-Fixed does
not converge. NASOQ-Tuned begins with an initial pass of NASOQ-Fixed. Then, if
the requested accuracy ε is not met, it successively tries new NASOQ passes with the
sequence of configurations in Table 6.1.

In practice, for all but 21 examples in our benchmark, we find that NASOQ-Tuned
successfully converges at all requested accuracies. See Section 6.5.3 for details.

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 99

Table 6.1: List of NASOQ-Tuned parameters. Each row contains parameters used in one pass of
NASOQ-Tuned.

Config max_iter diag_perturb stop_tol
1 2 10−9 10−15

2 2 10−13 10−15

3 2 10−7 10−15

4 2 10−11 10−17

5 3 10−10 10−15

6 3 10−9 10−17

7 3 10−11 10−17

6.5 Experimental Results

In this section we evaluate NASOQ against other solvers on a large set of QP problems
from diverse applications. First, we describe our experimental setup (Section 6.5.1)
and our new collection of 1513 sparse QP problems collected from a wide variety of
applications (Section 6.5.2). We then evaluate NASOQ for the full benchmark set,
comparing accuracy, efficiency, and scalability against existing tools (Section 6.5.3).
We then describe the effect of numerical range on NASOQ’s ability to attain conver-
gence (Section 6.5.4). Finally, we explore the impact of SoMod on overall performance
(Section 6.5.5).

Across all QP problems in our repository, NASOQ converges for over 99.5% of the
problems for accuracies ranging from 10−3 to 10−9 with average speedups ranging
from 1.7× to 24.8× over the best competing method. For requested accuracies of
10−3 and 10−6, NASOQ-Tuned has no failures, while only 21 problem instances (out
of 1513, or 1.4%) fail to reach the 10−9 accuracy threshold. Our analysis shows
that these few failures occur due to the numerical range of the problems themselves
and that other solvers likewise fail to solve these problems. NASOQ demonstrates
consistent efficiency and speedups across all application types, and we see that the
SoMod algorithm plays a critical role in the performance of NASOQ.

6.5.1 Experimental Setup

Testbed architecture All experiments are performed on a 6-core Haswell-E described
in Table 2.1 with turbo-boost disabled, running Ubuntu 16.04 with Linux kernel
4.4.0. NASOQ and all open-source solvers are compiled with GCC v5.4.0 using the
-O3 option. MKL 2019.1.144 is used wherever dense BLAS routines are required.
Throughout this section, convergence time refers to the wall clock time to reach
convergence, measured using the standard C++ chrono library. We use a time limit
of 30 minutes for all solvers; if a solver does not converge in 30 minutes for a problem

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 100

instance, we consider it a failure for that instance.
Termination criteria We set all solvers, where possible, to use common, absolute

(rather than relative) termination criteria, i.e., a common accuracy threshold ε for all
four measures in Equations 6.3-6.6. Relative tolerances are often specific to the algo-
rithm and/or particular domain, and are often highly susceptible to falsely reporting
convergence when an algorithm stagnates (e.g. small relative errors only tell us iter-
ates have stopped progressing) rather than reaching a low error solution. Although
accuracies for each of the four optimality measures in Equations 6.3-6.6 change de-
pending on application, we believe a desirable goal for a general-purpose QP solver
is to solve every reasonable problem to any requested accuracy given commensurate
time, and to only report success when accuracy is achieved. We don’t presume to
know a priori per problem type what measures are most important; instead, we eval-
uate fitness by asking each method to drive all measures down below each specified
error tolerance according to the infinity norms of Equations 6.3-6.6. Details for each
solver are explained separately below.

Solver settings We compare NASOQ with four widely-used state-of-the-art QP
solvers: OSQP [170], Gurobi [134], MOSEK [129], and QL [159]. These tools are se-
lected to represent different QP solver methods. OSQP applies a first-order method,
supports sparse problems, and parallelism. Gurobi and MOSEK are both commer-
cial tools based on barrier methods; both support parallel execution and sparse QP
problems. To compare NASOQ to an alternative Goldfarb-Idnani algorithm imple-
mentation, we include QL, a robust GI implementation; however, QL does not support
sparsity nor parallelism.

NASOQ is implemented in C++ with double precision, with METIS 5.1.0 for
reordering the inclusive matrix, and MKL BLAS [192] for dense operations within
LBL. All other QP solvers are set to their default modes and only settings related
to the requested accuracy or ε in Equations 6.3-6.6 are changed when exposed and
necessary, see below4.

OSQP is an open-source first-order solver designed for sparse QP problems. We use
OSQP 0.6.0 and build in double precision using the MKL Pardiso solver. In OSQP the
user-requested accuracy is scaled by the norm of matrix H (see [170] Section 3.4). This
scaling leads to early termination and thus inaccurate/non-optimal solutions. For fair
comparison, we change OSQP’s termination criteria to use the absolute requested
accuracy – leaving the algorithm otherwise unchanged5.

Gurobi and MOSEK are two commercial solvers that apply barrier methods to
solve QP problems. For both packages, we utilize default settings for the solvers. We

4The list of parameters related to user-requested accuracy for each solver is provided in Section A.3.
5Detailed information on the sole parts of the OSQP code we modify is provided in Section A.3.

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 101

use currently latest releases of MOSEK (v8) and Gurobi (v8). Gurobi uses an absolute
termination criteria and so can be applied in our comparison directly. MOSEK, on
the other hand, does not allow absolute error tolerances for convergence and instead
applies algorithm-specific, relative measures. As MOSEK is closed source (and so its
termination criteria can not be modified) we experimented with a range of its different
exposed parameter settings, seeking to maximize MOSEK’s success. Discussion of our
experiments with MOSEK and details of MOSEK’s behavior applied with its most
successful settings for comparison are covered in Section 6.5.3 below.

QL is a dense active-set solver based on the GI algorithm, implemented in Fortran.
We convert all sparse matrices to dense prior to using QL, as it only supports dense
matrices. Conversion time is not included in reported solve times. Large-scale QP
problems cannot be converted due to memory limitations of the testbed architecture.

Performance profile Aggregating combined performance and failure data in plots
across methods on a significantly-sized benchmark is always challenging. Thus, to
compare the convergence speed of different solvers, following existing work [46, 196,
170, 135] we utilize a performance profile plot. To define performance profiles, we use
the performance ratio rp,s = tp,s

minstp,s
where tp,s is the time for QP solver s to solve

problem instance p. When solver s fails for problem p, its performance ratio is set
to infinity, i.e., rp,s = ∞. After the performance ratio for all pairs of solvers and
problem instances is obtained, we compute the performance profile, function fs, that
maps any rp,s to [0, 1] and is computed as: fs(τ) = 1

np

∑
p α≤τ (rp,s) where α≤τ = 1

if rp,s ≤ τ and np is the number of problems in our repository. fs(τ) denotes the
fraction of solved problems within τ× the time of the best solver. Thus, in Figure 6.4
for example, faster performance for a given fraction of problems means the line is to
the left, while more problems with successful convergence lead to lines that are higher
on the y-axis.

Speedup In addition to performance profiles, we also provide detailed, per-category
analyses and breakdowns using speedup and failure rate (Section 6.5.3). The reported
average speedup throughout the chapter is computed using normalized shifted geo-
metric mean [170, 125]. Given tp,s is the time for QP solver s to solve problem
instance p, shifted geometric mean of solver s across n problems is computed as:
gs = n

√∏
p(tp,s + k)− k where k is the shift and selected to be one [170]. When

solver s fails in the problem p, tp,s = 1800 which is the 30 minute time limit in sec-
onds. To avoid overflow we use the logarithmic form of the geometric mean. Given
gs for each solver, the speedup of solver s1 over s2 is computed by gs2

gs1
.

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 102

6.5.2 Benchmark Repository for Sparse Quadratic Programs

We assemble a repository for sparse QP problems of different scales, most of which
come from applications in animation, geometry processing, and simulation. Existing
QP problem benchmarks are not large enough to stress-test large-scale QP solvers.
For example, the largest QP problem instance in terms of the number of variables
in the Maros-Mészáros repository [121] only has 10k variables, which is far smaller
than real-world large-scale QP problems. Existing QP solvers are either tested for a
limited number of problems or are tested for randomly generated problems [170, 135].
To address this shortcoming, we gathered existing strictly-convex QP benchmark
problems and also added a set of new QP problem instances mostly arising from
computer graphics applications.

Our repository includes QP instances from shape deformation, contact simulation,
model reconstruction, and cloth simulation from computer graphics; model predictive
control (MPC) [160] from robotics; and strictly-convex QP problems from the Maros-
Mészáros repository [121]. The number of variables ranges from 50–114309 and the
number of constraints ranges from 20–10k. Each QP for image deformation comes
from Jacobson et. al. [95] and is created using libigl [96]. Contact simulation QPs
correspond to QP problems that must be solved in each timestep of the simulation
and are created using the GAUSS library [109]. Model reconstruction instances are
QP problems that compute the third dimension of a 2D mesh, explained in [177, 53].
Cloth simulation QPs arise from each timestep of the cloth simulation in [194].

6.5.3 Accuracy, Efficiency, and Scalability of NASOQ

NASOQ can solve a large range of QP problems from different application types
and across a range of problem scales. In this section, we first compare the efficiency
and scalability of NASOQ to other QP solvers and demonstrate NASOQ’s superior
performance. We also explore the performance of NASOQ versus other tools for
different types of applications. Finally, we discuss the effect of using the full-space
method in NASOQ.

Overall performance

As discussed in Section 5, NASOQ-Fixed and NASOQ-Tuned target different points
in the trade-off between efficiency and accuracy. NASOQ-Tuned sweeps through
a set of parameters to deliver improved accuracy for problems where accuracy is
critical. Thus, as shown in Figure 6.3, NASOQ-Tuned always converges for requested
accuracy thresholds of 10−3 and 10−6, while NASOQ-Fixed fails for 1.2% of problems

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 103

0%

10%

20%

30%

40%

50%

eps = 1e-3 eps = 1e-6 eps = 1e-9

Fa
ilu

re
 R

at
e(

%
)

0%

5%

10%

15%

20%

eps = 1e-3 eps = 1e-6 eps = 1e-9

Fa
ilu

re
 R

at
e

(%
)

Gurobi MOSEK NASOQ-Fixed

NASOQ-TUNED OSQP OSQP-polished

QL 93.6 97.3

82.3 97.3

Figure 6.3: Failure rate of NASOQ-Fixed, NASOQ-Tuned, OSQP, OSQP-Polished, Gurobi, QL, and
MOSEK across different ranges of accuracy (10−3, 10−6, and 10−9) and for both small-scale (top)
and large-scale (bottom) QP problems. NASOQ-tuned has the lowest failure rate compared to all
other QP solvers for problems of different scales and for different requested accuracies.

(there are 21 problem instances that NASOQ-Tuned fails for 10−9; this is explained
in Section 6.5.4). Since NASOQ-Tuned starts from the NASOQ-Fixed configuration,
the performance profiles of both variants are similar, as shown in Figure 6.4 and the
small difference is due to problems that NASOQ-Tuned converges and NASOQ-Fixed
fails. The convergence behaviour of both variants of NASOQ is consistently better
than other solvers for both large- and small-scale problems (Figure 6.3).

OSQP uses several lightweight iterations to incrementally improve the accuracy of
the solution to the QP problem. However, when an accurate solution is needed, the
number of iterations significantly increases in OSQP, leading to reduced efficiency.
Like NASOQ-Tuned, OSQP also has a variant, called OSQP-polished, that trades off
efficiency for accuracy in problems where accuracy is critical. OSQP-polished uses an
additional step after OSQP to refine accuracy and obtain solutions for some problems
when the accuracy range is 10−9. OSQP and OSQP-polished collectively solve 94%
percent of all problems in our repository for accuracy ranges of 10−3, 10−6, 10−9 which
is quite good, but still considerably less than the 99% obtained from NASOQ (see
Figure 6.3). NASOQ is more efficient than OSQP across all problem scales and for

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 104

100 101 102 103 104

Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

ro
bl

em
s s

ol
ve

d
(to

l =
 0

.0
01

)

Gurobi
MOSEK
NASOQ-Fixed
NASOQ-TUNED
OSQP
OSQP-polished
QL

100 101 102 103 104

Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

ro
bl

em
s s

ol
ve

d
(to

l =
 1

e-
06

)

Gurobi
MOSEK
NASOQ-Fixed
NASOQ-TUNED
OSQP
OSQP-polished
QL

100 101 102 103 104

Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

ro
bl

em
s s

ol
ve

d
(to

l =
 1

e-
09

)

Gurobi
MOSEK
NASOQ-Fixed
NASOQ-TUNED
OSQP
OSQP-polished
QL

100 101 102 103 104

Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

ro
bl

em
s s

ol
ve

d
(to

l =
 0

.0
01

)

Gurobi
MOSEK
NASOQ-Fixed
NASOQ-TUNED
OSQP
OSQP-polished

100 101 102 103 104

Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

ro
bl

em
s s

ol
ve

d
(to

l =
 1

e-
06

)

Gurobi
MOSEK
NASOQ-Fixed
NASOQ-TUNED
OSQP
OSQP-polished

100 101 102 103 104

Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

ro
bl

em
s s

ol
ve

d
(to

l =
 1

e-
09

)

Gurobi
MOSEK
NASOQ-Fixed
NASOQ-TUNED
OSQP
OSQP-polished

Figure 6.4: Performance profiles for NASOQ-Fixed, NASOQ-Tuned, OSQP, OSQP-Polished,
Gurobi, QL, and MOSEK across different ranges of accuracy (from left to right: 10−3, 10−6, and
10−9) and for small-scale (top) and large-scale (bottom) QP problems from our repository. Lines
to the left are more efficient, and lines higher on the y-axis solve a greater percentage of problems
within a given performance threshold. The figures show that NASOQ-Fixed and NASOQ-Tuned
are, for almost all accuracies and all problem scales, more efficient than available QP solvers and
are able to solve more of the QP problems in our repository.

different accuracy thresholds. For example, the average speedup of NASOQ-Fixed
over OSQP for thresholds of 10−3 and 10−6 is 2.7× and 2.3× respectively.

Gurobi, in contrast to NASOQ, has a high failure rate and does not scale to larger
problems. Unlike NASOQ and OSQP, Gurobi does not provide different variants
to balance accuracy and efficiency. In Gurobi, the number of iterations typically
remains unchanged for different requested accuracies. Thus, in Figure 6.4, all perfor-
mance profiles for Gurobi follow similar trends across different requested accuracies
and different problem scales. For accuracies of 10−3 and 10−6, Gurobi’s failure rate is
similar to that of OSQP; however, compared to NASOQ, Gurobi fails in more prob-
lems. Furthermore, Gurobi exhibits a high failure rate for large-scale problems with
lower requested error. For example, for the threshold of 10−9, Gurobi fails for 42.25%
of large-scale problems as shown in Figure 6.3.

MOSEK is another barrier method that converges in a bounded number of computationally-
heavy iterations. MOSEK does not converge for most large-scale problems with accu-
racy thresholds lower than 10−3. As shown in Figure 6.3, the failure rate of MOSEK
for smaller requested accuracy thresholds is more than 82%, which is significantly
higher than the failure rate of all other solvers. As discussed in Section 6.5.1, MOSEK

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 105

doesn’t allow absolute error tolerances and instead applies algorithm-specific, relative
measures. We experimented with a number of different parameter settings, attempt-
ing to improve MOSEK’s success. During this process we observed that decreasing
requested accuracies further below 10−10 produces slower performance and increased
failures. For example, requesting 10−16 accuracy leads failure rates to increase to
86%. We find setting to the requested accuracy works best for MOSEK in terms of
combined performance and failure rate reduction. We also set MOSEK’s infeasibil-
ity tolerance parameter to the default: 10−12. We find no change for high accuracy
benchmarks (i.e. 10−6 and 10−9) and a 0.2% reduction in failure rate for 10−3. We
observe, however, consistent with [170] the speed and failure rate of MOSEK generally
lags behind OSQP at low accuracy and Gurobi at higher accuracies.

QL is a dense active-set solver and thus can only solve small-scale problems. For
small QP problems, QL’s failure rate is 11% for each of the accuracy thresholds as
shown in Figure 6.3. The figure also shows that the performance profile and efficiency
of QL in Figure 6.4 is inferior compared to other QP solvers including NASOQ, due
to its lack of support for sparsity and parallelism.

Effect of Different Applications

Different applications create varying types of QP problems that pose different chal-
lenges to solvers. We examine the obtained accuracy and efficiency with different
QP solvers as we vary QP problem types. Our analysis shows that unlike other QP
solvers, NASOQ performs well across different application domains.

To show this variation, we compare NASOQ-Tuned, NASOQ-Fixed, OSQP, and
Gurobi across different application types for the accuracy threshold of 10−6; the trend
holds for other accuracies. QL and MOSEK do not successfully converge for larger
problem sizes, so we exclude them from our comparison.

For contact simulation problems, NASOQ-Tuned and NASOQ-Fixed provide the
lowest failure rates (0% and 0.15%, respectively) compared to all other solvers. Al-
though OSQP’s failure rate (1.07%) is higher than NASOQ, it still performs better
than Gurobi, which fails for 3.44% of these instances. The efficiency of these solvers
also follows the same trend where both NASOQ solvers are faster than OSQP in 80%
of contact simulation problems with an average of 2.1× speedup across all contact
simulation instances. OSQP also exhibits better efficiency than Gurobi.

In shape deformation and model reconstruction, NASOQ-Fixed and NASOQ-
Tuned do not fail for any problems while OSQP and Gurobi fail in 12.5% of in-
stances. NASOQ is 22.8× and 24× faster than OSQP and Gurobi respectively for
these problems.

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 106

For Maros-Mészáros problems, NASOQ-Tuned does not fail for any problem and
the nearest competitors are Gurobi and NASOQ-Fixed with failure rates of 15%
and 24.5%, respectively. NASOQ-Tuned is on average 8.9× faster than Gurobi and
NASOQ-Fixed is slower than Gurobi by 3.2×. OSQP does not perform well for
Maros-Mészáros problems (45% failure rate).

For model predictive control (MPC) problems, NASOQ-Tuned and NASOQ-Fixed
show no failures while OSQP’s failure rate is 2.5%, which is relatively high compared
to Gurobi, which fails in only 0.83% of instances. Both NASOQ-Tuned and NASOQ-
Fixed solvers are faster than OSQP and Gurobi. For example, NASOQ-Fixed obtains
an average speedup of 3.4× over OSQP-polished.

Unlike other existing solvers, NASOQ provides consistent efficiency and good ac-
curacy across all problem types. Both variants of NASOQ are more efficient and
accurate compared to all solvers, with the exception of the failure rate of NASOQ-
Fixed for Maros-Mészáros problems 6.

Effect of the Full-Space Approach

As discussed in Section 6.4, NASOQ replaces the range-space method in GI with a
full-space approach. In this section we examine the effect of the full-space approach on
the accuracy of NASOQ to demonstrate that the use of a full-space method does not
negatively affect the accuracy of NASOQ compared to a range-space approach. To
show the accuracy of NASOQ’s full-space method, we integrate a range-space method
inside NASOQ and use it to solve the KKT systems. We call this implementation
NASOQ-Range-Space. Cholesky decomposition along with the QR decomposition
are used instead of SoMod in NASOQ-Range-Space. However, due to the use of QR
decomposition that has intensive memory usage, NASOQ-Range-Space is limited to
solving small-scale problem instances. Table 6.2 shows the failure rates of NASOQ-
fixed, NASOQ-Tuned, and NASOQ-Range-Space for small-scale problems in our QP
dataset. NASOQ-Fixed has a failure-rate comparable to NASOQ-Range-Space and
NASOQ-Tuned performs significantly better than NASOQ-Range-Space. Thus, using
SoMod and the full-space method in NASOQ does not reduce the accuracy of the QP
solver and can even improve accuracy with an appropriate choice of parameters for
NASOQ-Tuned.

6.5.4 Effect of Numerical Range

NASOQ-Tuned and other QP solvers fail to solve 21 problem instances in our bench-
mark suite for the accuracy of 10−9; Gurobi is an exception, but it can only solve

6The breakdown by application for each user-requested accuracy and for each solver is provided in Section A.4.

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 107

Table 6.2: Failure rate of NASOQ for different ranges of accuracy using range-space (NASOQ-
Range-Space) and full-space (NASOQ-Fixed and NASOQ-Tuned) methods for small-scale problems
in our QP repository. NASOQ-Fixed has a failure rate comparable to that of NASOQ-Range-Space.
NASOQ-Tuned outperforms NASOQ-Range-Space and has no failures for accuracies ε = 10−3 and
ε = 10−6.

ε = 10−3 ε = 10−6 ε = 10−9

NASOQ-Range-Space 0% 0.23% 2.42%
NASOQ-Fixed 0.1511% 0.45% 1.44%
NASOQ-Tuned 0% 0% 0.91%

2 of these 21 problems. This section discusses properties of these 21 problems and
explores why existing QP solvers and NASOQ-Tuned fail to solve them.

These problem instances have a large numerical range which can be classified
into two categories: (1) problems that contain a large value (106 or larger) in either
their input matrices or vectors (matrices H, A, and C and vectors q, b, and d in
Equation 6.1); and (2) problems with large values in their primal or dual variables
(vectors x, y, and z in Equations 6.1–6.2). This large numerical range limits the
accuracy QP solvers can achieve in double precision.

This issue can be resolved if (i) for the first category, a scaling technique [54] is
used to normalize the range, and (ii) for the second category, an implementation
with higher precision is used; for example, using floating-point types with 128 bits of
precision.

Gurobi is the only QP solver that converges for two of these problem instances.
While NASOQ-Tuned is able to get close to the accuracy threshold of 10−9 (because
the stationarity norm for these two problems in NASOQ-Tuned is 4.7× 10−9 and
4.4× 10−9), the maximum value of the Lagrange multipliers in these two problems is
about 106, which leads to inaccurate solutions for some intermediate KKT systems
and thus leads to failure in NASOQ-Tuned.

6.5.5 Effect of SoMod

As discussed in Section 6.3, NASOQ uses SoMod to efficiently solve the successive
KKT systems arising in active-set methods. In this section we analyze the effect of So-
Mod on NASOQ’s performance and also separately demonstrate the efficiency of using
LBL in NASOQ.We use the NASOQ-Fixed variant of NASOQ throughout this section
because the effects of SoMod are the same in both variants. Figure 6.5 compares the
performance profile of NASOQ-Fixed for ε = 10−9 with three different modifications
of NASOQ: (i) NASOQ-Fixed-CHOLMOD, which uses CHOLMOD [26] instead of
SoMod in NASOQ; (ii) NASOQ-Fixed-LBL, which instead of using row modification
in NASOQ solves all KKT systems from scratch using LBL; and (iii) NASOQ-Fixed-

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 108

100 101 102 103 104

Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

ro
bl

em
s s

ol
ve

d
(to

l =
 1

e-
06

)
NASOQ-Fixed-CHOLMOD
NASOQ-Fixed-MKL
NASOQ-Fixed
NASOQ-Fixed-LBL
OSQP

Figure 6.5: Performance profile of NASOQ using SoMod (NASOQ-Fixed), using CHOLMOD row
modification (NASOQ-Fixed-CHOLMOD), solving from scratch using LBL (NASOQ-Fixed-LBL),
and solving from scratch using MKL (NASOQ-Fixed-MKL). OSQP is also shown as a reference
solver. NASOQ-Fixed (green line) performs better than the modified versions of NASOQ. Note that
this performance profile contains both small and large QP instances, unlike Figure 6.4.

MKL which solves all KKT systems in NASOQ using the MKL-Pardiso solver. In all
modifications, the same number of accuracy refinement iterations is used. Overall,
NASOQ-Fixed is faster than all other implementations while achieving the fewest
failures.

NASOQ-Fixed-CHOLMOD replaces SoMod’s row modification and LBL phases
with row modification and the solver used in CHOLMOD [26]; the iterative refinement
from SoMod is still used in NASOQ-Fixed-CHOLMOD because CHOLMOD does not
come with refinement. CHOLMOD’s row modification primarily supports symmetric
positive definite (SPD) matrices. CHOLMOD will fail or provide inaccurate results
for some indefinite systems: (i) unlike SPD systems, the diagonal value of the L-factor
in an indefinite KKT system can sometimes be negative, so CHOLMOD may fail for
these systems as it uses square root in computations that involve the diagonal value;
(ii) to update the new L-factor, CHOLMOD uses the already computed L-factors, and
thus numerical errors and inaccuracies may propagate to subsequent computations.
NASOQ however re-computes the affected columns using the input matrix; thus its L-
factor is more accurate compared to that of CHOLMOD’s as the number of iterations
in the QP solver increase. Adding a perturbation value to the diagonal entries will
remove some failures in CHOLMOD and so it can solve some (but not all) indefinite
systems. With perturbation, the accuracy of the KKT solve using CHOLMOD is still

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 109

low and leads to failure in 40% of QP problems. As shown in Figure 6.5, NASOQ-
Fixed-CHOLMOD mostly converges for small-scale QP problems when the number
of variables is fewer than 50, and needs few iterations to converge. Unlike NASOQ,
NASOQ-Fixed-CHOLMOD does not need to create an initial inclusive matrix and
thus its initial setup time is small; this leads to faster performance for very small QP
problem instances. NASOQ-Fixed is overall faster than NASOQ-Fixed-CHOLMOD
and results in the fewest failures.

NASOQ-Fixed is on average 3.1× faster than NASOQ-Fixed-LBL and NASOQ-
Fixed-MKL. This demonstrates the importance of using the factor modification method
of SoMod in NASOQ to avoid solving the KKT systems from scratch. In addi-
tion, NASOQ-Fixed-LBL and NASOQ-Fixed-MKL demonstrate a similar perfor-
mance profile which warrants the use of LBL as a replacement solver for MKL in
SoMod while benefiting from the unique features of LBL that facilitate the imple-
mentation of row modification in SoMod.

To separately measure the performance of LBL in NASOQ, we use the indefinite
solver from MKL-Pardiso instead of LBL for solving the initial KKT system in NA-
SOQ; we call this variant NASOQ-Fixed-Initial-MKL. All other components of SoMod
that solve the successive KKT systems remain unchanged. NASOQ-Fixed obtains a
similar performance to that of NASOQ-Fixed-Initial-MKL: it is roughly 1.01× faster.
The reason for the small effect of LBL on overall performance of NASOQ is that only
a small fraction of the overall time is spent on the initial factorization; on average
initial factorization only accounts for 25% of NASOQ time.

6.6 Related Work

QP algorithms can be categorized into three broad classes of methods: barrier (pri-
marily interior-point), first-order, and active-set.

Barrier methods Barrier methods [64, 72, 122, 47, 134, 129, 135, 191] apply weighted
barrier functions in the objective to enforce inequality constraints, converting inequal-
ity constrained QPs into equality-constrained nonlinear problems that can be solved
by Newton or quasi-Newton methods [14, 23]. Performing a series (homotopy) of
progressively tighter and thus more challenging barrier solves leads to interior-point
and related methods [23]. As unconstrained optimization methods can then be di-
rectly applied, barrier methods can leverage sparse linear methods and so scale to
large systems. Thus popular, a wide range of commercial [134, 129] and open-source
[64, 190] interior-point solvers are available. However, accurate solutions are challeng-

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 110

ing to obtain for barrier methods – especially as system and constraint sizes grow.
As accuracy is tightened, barrier solvers generally require increasingly large numbers
of iterations. In turn, each iteration necessitates the expensive solution of a new,
large-scale linear system.

First-order method: OSQP Barrier methods leverage second-order expansions of
constraint information via Newton-type methods which can be expensive for compu-
tation per iterate. On the other hand, per-iteration efficient methods can be con-
structed by leveraging first-order strategies. In particular, operator splitting via the
alternating direction method of multipliers (ADMM) has been recently applied to
design OSQP [170], an efficient, highly scalable, first-order QP algorithm. OSQP
forms all constraints into a single, large saddle-point-like system and then re-applies
the solution of this system in each successive ADMM iteration to update primal and
dual terms. OSQP thus can take advantage of lightweight computations per iteration
and scales well to large, sparse QP problems. However, consistent with first-order
strategies it can be slow or even unable to reach accurate solutions for larger and
more challenging QP problems.

Active-set methods. Active-set methods [69, 159, 68, 120, 57] start with an initial
feasible solution and then iterate to obtain the optimal solution while maintaining
feasibility. After finding the initial feasible solution, which is either primal- or dual-
feasible depending on the method, active-set methods look for the optimal active-
set by solving successive KKT systems that include all constraints in the current
active-set. Solving these KKT systems is the most expensive part in these methods.
Active-set methods are divided into direct and indirect based on how they solve KKT
systems [19]. Indirect methods, known as range-space [70] and null-space [68] meth-
ods, solve the KKT system using a Cholesky factorization along with a QR or Schur
complement. Although these techniques provide an accurate solution, they do not
preserve sparsity and thus do not scale for large QP problems due to high memory
usage and extensive computations in the QR and Schur complement factorization.
Full-space methods [75, 94], on the other hand, are direct active-set QP methods that
work directly with the KKT system. Solving the KKT system using an iterative algo-
rithm such as a Krylov subspace method [74] for active-set methods requires finding
an efficient preconditioner for any arbitrary active-set which is often difficult [120].
Factorizing the KKT system using a direct method is very expensive and thus existing
full-space techniques build an augmented system, along with an initial KKT, to com-
pute the solution of the KKT system via the Schur complement [75] or Block-LU [94].

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 111

Both of these methods require large amounts of storage thus limiting their scalability
and efficiency. Nevertheless, full-space methods have a promising property – they
preserve the sparsity pattern of the system. In this work we leverage this sparsity to
efficiently re-use factors across iterations. We introduce a new, full-space active-set
algorithm, based on the Goldfarb-Idnani active-set strategy, that directly factorizes
the successive KKT systems with SoMod and LBL to enable sparsity-oriented row
modification and indefinite factorization of the successive KKT systems across our
full-space QP solver’s iterations.

LDL factorization Using direct factorization methods for solving a linear system of
equations is common in many computer graphics applications [200, 87, 88] and is a
subroutine in full-space QP solvers. A number of existing factorization methods are
designed for solving a sparse SPD system of equations [26, 29, 28, 87]. These methods
use a square-root based Cholesky factorization [37, 71] that will fail with symmetric
indefinite systems from negative values under the square root when factorizing diag-
onals. Applying these solvers with regularization [87] prevents these types of failures
but can introduce significant inaccuracies to problem solutions. Some existing indef-
inite factorization methods are square-root free [71] but are slow, e.g., SuiteSparse’s
LDL [32] which is a single-thread implementation. Parallel indefinite solvers such
as MKL Pardiso [192], the standalone Pardiso solver [156, 154] and MA57 [52, 92]
provide fast factorizations but do not support factor modifications for when a row/-
column is changed. We introduce LBL, a new, parallel, indefinite, square-root free
solver with pivoting, that additionally enables modifying already-computed factors
efficiently. LBL extends the parallelism strategy from Cheshmi et al. [28] from SPD
to indefinite factorizations where the now-required pivoting introduces new depen-
dencies.

L-factor modification Modifying the L-factor to avoid re-factoring a symmetric ma-
trix after small changes [39, 38] is a critical task in computer graphics [84, 87], circuit
simulation [83, 40], and optimization [40]. In all such applications, the linear system
of equations changes either by a rank update/downdate (adding or subtracting the
outer product of a row by itself) or a row modification. Existing modification meth-
ods [39, 87] are generally designed to perform rank update/downdate (A+ wwT) on
SPD matrices. These modification methods are then not applicable to our active-set
QP solver where a row/column is modified for a symmetric indefinite system in each
iteration. In turn, to our knowledge the only existing system with sparse row modi-
fication is CHOLMOD [40] which is an efficient solution designed for SPD matrices.

CHAPTER 6. ADAPTIVE SPARSITY PATTERN IN QUADRATIC PROGRAMMING 112

Thus CHOLMOD row modification does not provide accurate and stable solution
updates for indefinite KKT systems; see Section 6.5.5. We propose SoMod row mod-
ification to leverage the sparsity pattern of constraint row updates and so accurately
and efficiently modify the L-factor of indefinite factorization.

Chapter 7

Conclusion and Future Work

This thesis presents Sympiler, a domain-specific code generator that generates highly
optimizes code for sparse matrix computations on modern parallel architectures. The
thesis starts by introducing a novel symbolic decoupling strategy that enables the in-
spection of static sparsity patterns in sparse codes. It takes the sparse matrix pattern
and the sparse matrix algorithm as inputs to perform symbolic analysis at compile
time. It then uses the information from the symbolic analysis to apply a number of
inspector-guided and low-level transformations to the sparse code. We demonstrate
in Chapter 3 how this approach will lead to generating code that outperforms highly-
optimized code from state-of-the-art libraries on single-core architecture on two sparse
kernels.

Then in Chapter 4, we propose the Load-Balanced Level Coarsening algorithm
inside ParSy that can be used as an inspector inside Sympiler to generate code that
improves locality and reduces synchronization in sparse kernels when executing on
parallel architectures. ParSy takes the numerical algorithm and sparsity pattern of
the matrix and generates optimized parallel multi-core code. ParSy’s inspector uses
the LBC algorithm for inspection along with H-Level transformation for generating
the code. ParSy-generated code outperforms state-of-the-art sparse libraries for sparse
Cholesky and triangular solve across different multi-core processors.

The dissertation then addresses the problem of optimizing more than one sparse
kernel at the same time. In chapter 5, we present sparse fusion and demonstrate how it
improves parallelism, load balance, and data locality in sparse matrix combinations
compared to when sparse kernels are optimized separately. Sparse fusion inspects
the DAGs of the input sparse kernels and uses the MSP algorithm to balance the
workload between wavefronts and determine whether to optimize data locality for
within or between the kernels. Sparse fusion’s generated code outperforms state-of-
the-art implementations for sparse matrix optimizations.

113

CHAPTER 7. CONCLUSION AND FUTURE WORK 114

The final chapter of the thesis aims to demonstrate that when sparsity patterns
in certain applications change, the changes can be computed prior to optimizing
the sparse matrix computation more efficiently. This is demonstrated with NASOQ
and on QP solvers. NASOQ enables simultaneously accurate and efficient solves for
large and sparse QP problems across application domains. To enable NASOQ we
have constructed a new sparsity-oriented SoMod row modification method and LBL,
our fast LDL factorization for indefinite systems. Together they enable the efficient
updates and accurate solutions of the iteratively modified KKT systems critical to
accurate QP solves. To better understand QP computational challenges and solver
performance, we gathered a comprehensive benchmark set comprising a wide range of
application-based QP problems. We hope that its application will lead to improved
testing and further development of performant QP solvers.

As future work, the existing domain-specific compilation techniques, specifically
what is proposed in this dissertation, can be used to improve the performance of
general compilers. There are a relatively large number of domain-specific compilers
that often create confusion amongst practitioners on when and how they can be used.
Instead of presenting Sympiler to the community as yet another domain-specific code
generator, I envision its approach to doing symbolic analysis to generate inspectors
and code transformation for sparse codes can guide the design of future general-
purpose compilers. Towards this direction, approaches that use program analysis to
extract domain information for a general input code can be explored, and then this
information can be used to automatically generate inspectors for symbolic analysis.
I have started to investigate domain-specific and trace-based analysis to generate
specialized code for sparse loops. Generative programming and just-in compilation
can also be used to construct the general code specialization framework.

Optimizing matrix computation codes can lead to inaccuracy or incorrectness due
to compile-time and/or run-time inefficiencies of the system. Verifying the optimiza-
tion passes applied is either expensive due to the huge exploration space or impos-
sible due to complex indexing in the codes. Even when verified, rounding errors in
floating-point operations or transient faults specially when ran on large-scale and
parallel machines can lead to inaccurate or wrong results. Techniques should be
developed to ensure the correctness and resilience of the generated code while pre-
serving its performance by proposing compile-time and runtime techniques that use
domain-specific information or information from other abstractions to enable efficient
verification at compile time. If such techniques are developed, they can be used to
verify the transformations in Sympiler and facilitate their integration into general
compilers.

CHAPTER 7. CONCLUSION AND FUTURE WORK 115

Algorithms in several applications such as machine learning and scientific simula-
tions are composed of several consecutive kernels and loops. Optimizing these loops
jointly would enable opportunities to optimize for parallelism and locality. Fusing
two loops in sparse iterative solvers is investigated in Sympiler however, there are po-
tential opportunities in fusing more than two loops or computations. This extension
would require investigating techniques that determine the profitability of loop fusion
for more than two loops. For example, such analysis would decide which loops should
be fused and in what order. This is an interesting future work direction as it extends
the applicability of Sympiler to more applications.

Databases are critical in a wide class of applications ranging from multimedia
retrievals such as Youtube and web content retrieval to scientific computing and global
positioning systems. Efficiency and productivity are key to designing robust database
applications. Achieving both requires a high-level language for productivity that at
the same time provides the efficiency of low-level handwritten query plans. To obtain
this, efficient query processing is necessary to convert the query plan corresponding to
the high-level description into an efficient native code. Query processing has shifted
from being I/O bound to becoming CPU bound because of hardware advancements
that has led to larger main memories and non-volatile memory architecture, and due
to the demand for computationally intensive analytics. Thus, database applications
will significantly benefit from a query compiler that can apply workload-specific low-
level optimization passes to generate an efficient code. For example, the compiler
passes that are used for a spatial workload differ from those used for a graph processing
workload. Generating codes that efficiently use all cores and vector units of each core
is another requirement for a query compiler. Sympiler code specialization techniques
can be be extended to support some of the database workloads.

Appendix A

Appendix for Transforming Sparse
Matrix Computations

A.1 DAG Partitioners Limitations

Figure A.1 compares the performance of two DAG partitioners, DAGP and LBC for
different sizes of sparse DAGs. In the one DAG configuration, the DAG paritioner
partitions the DAG of sparse triangular solve (SpTRSV) CSR. In the joint DAG
configuration, the DAG partitioner paritions the joint DAG of the sparse matrix
vector multiplication (SpMV) CSR and SpTRSV CSR. Both configurations run on
a set sparse matrices with different sizes from the SuiteSparse collection [41]. To
compare the joint DAG configuration with the one DAG configurations, the x-axis
shows the number of edges in one of the DAGs, i.e. SpTRSV DAG. The number of
edges in the joint DAG is three times the edges of the SpTRSV DAG. As shown in
the Figure A.1, the DAGP in both one DAG and joint DAG configurations are slower
than LBC, for both small and large size DAGs. Also, DAGP on the joint DAG runs
out of memory for last seven large DAGs (hence not shown in the figure).

Figure A.2 separately shows partitioning time of LBC. As shown, the execution
time of LBC is not proportional to the number of edges and the execution time is
significantly higher for most of joint DAGs and for some large DAGs. For example,
while the number of edges in the joint DAG is three times that of one DAG, LBC on
the joint DAG is slower than LBC on one DAG with an average of 9.2×. Chordalizion
phase of initial coarsening in LBC is the reason behind this non-linear slowdown.
Because LBC’s partitioning time is reasonably low for one DAG, sparse fusion uses
it to partition one of the DAGs, i.e. the head DAG.

116

APPENDIX A. APPENDIX FOR TRANSFORMING SPARSE MATRIX COMPUTATIONS 117

0.00E+00 1.00E+07 2.00E+07 3.00E+07 4.00E+07 5.00E+07 6.00E+07 7.00E+07
0.001

0.01

0.1

1

10

100

1000

LBC One DAG DAGP Joint DAG LBC Joint DAG DAGP One DAG

The number of edges in the SpTRSV DAG

T
im

e
 (

s
e

c
)

Figure A.1: Performance of DAGP and LBC DAG partitioners for DAGs with different number of
edges in an individual and joint DAG.

0.00E+00 1.00E+07 2.00E+07 3.00E+07 4.00E+07 5.00E+07 6.00E+07 7.00E+07
0

5

10

15

20

25

30

35

LBC One DAG LBC Joint DAG

The number of edges in the SpTRSV DAG

T
im

e
 (

s
e

c)

Figure A.2: Performance of LBC DAG partitioner for one DAG and joint DAG.

A.2 Experimental Results for Xeon Platinum8160

Figure A.3 shows the performance of the fused code from sparse fusion, the unfused
implementation from ParSy and MKL, and the fused wavefront, fused LBC, and
fused DAGp implementations. All execution times are normalized over a baseline.
The baseline is obtained by running each kernel individually with a sequential im-
plementation. As shown, sparse fusion on the Platinum processor outperforms other
implementations with a similar trend to results on Xeon E5 processors, which are
discussed in Section 4 of Chapter 5. The sparse fusion’s fused code is on average
1.3× faster than ParSy’s executor code and 5.2× faster than MKL across all kernel
combinations (excluding ILU0 combinations). The fused code from sparse fusion is

APPENDIX A. APPENDIX FOR TRANSFORMING SPARSE MATRIX COMPUTATIONS 118

on average 1.9×, 5.2×, and 7.4× faster than in order fused wavefront, fused LBC,
and fused DAGp.

L 1L 1 * b
CSR-CSR

L 1 * (A * x)
CSR-CSR

LU DADT

CSR-CSR
A * (L 1 * x)
CSR-CSC

(LLT) 1 * b
CSC-CSC

(LU) 1 * b
CSR-CSR

LLT DADT

CSC-CSC

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 80

5

10

Se
qu

en
tia

l T
im

e
/ I

m
pl

em
en

ta
tio

n
Ti

m
e ParSy Sparse Fusion MKL Fused Wavefront Fused LBC Fused DAGP

Figure A.3: Performance of different implementations shown with speedup from dividing baseline
time by implementation time. The target architecture is Xeon Platinum8160 with 24 cores.

Figure A.4 shows the number of times that the executor should run to amortize
the cost of inspection for implementations that have an inspector. As shown, similar
to Figure 5.9, sparse fusion has the lowest overhead compared to other methods and
DAGP and LBC on a joint DAG have the most expensive inspection overhead.

L 1L 1 * b
CSR-CSR

L 1 * (A * x)
CSR-CSR

LU DADT

CSR-CSR
A * (L 1 * x)
CSR-CSC

(LLT) 1 * b
CSC-CSC

(LU) 1 * b
CSR-CSR

LLT DADT

CSC-CSC

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

5
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

Nu
m

be
r o

f E
xe

cu
to

r R
un

s

ParSy Sparse Fusion Fused Wavefront Fused LBC Fused DAGP

Figure A.4: The number of executor runs to amortize inspector cost. Values are clipped between -5
and 80. (lower is better)

A.3 Settings for QP solvers

In this section we explain settings used for each solver and also discuss how these
settings provide a fair evaluation. Throughout this section, eps refers to the accuracy
threshold ε which is either 10−3, 10−6, or 10−9.

APPENDIX A. APPENDIX FOR TRANSFORMING SPARSE MATRIX COMPUTATIONS 119

A.3.1 Gurobi

The following parameters are set to eps for Gurobi 1:

1 model_.set(GRB_DoubleParam_OptimalityTol, eps);

2 model_.set(GRB_DoubleParam_FeasibilityTol, eps);

Gurobi supports using an absolute termination criteria and setting these parameters
provides a fair comparison with other solvers.

A.3.2 MOSEK

The following parameters are set to eps in MOSEK.2

1 program->setParamDouble(MSKdparam_enum::MSK_DPAR_INTPNT_QO_TOL_DFEAS,eps);

2 program->setParamDouble(MSKdparam_enum::MSK_DPAR_INTPNT_QO_TOL_PFEAS,eps);

3 program->setParamDouble(MSKdparam_enum::MSK_DPAR_INTPNT_QO_TOL_MU_RED,eps);

4 program->setParamDouble(MSKdparam_enum::MSK_DPAR_INTPNT_QO_TOL_INFEAS,eps);

MOSEK does not support an absolute termination criteria thus in addition to the
demonstrated configuration, i.e., using eps for all parameters, we tested MOSEK with
three different settings to find the best configuration for a fair enough evaluation:

• setting all eps to 10−16.

• setting MSKdparam_enum::MSK_DPAR_INTPNT_QO_TOL_INFEAS to 10−12 and the
remaining three parameters to eps.

• setting all parameters to their default values for all requested accuracy thresh-
olds, i.e., eps.

Our experiments show that using eps for all parameters provides an overall better
failure rate and performance.

In addition to the above, we also realized using eps for parameter
MSKdparam_enum::MSK_DPAR_INTPNT_QO_TOL_REL_GAP increases MOSEK’s failure rate,
so we did not configure this parameter and used its default value instead.

Parameter MSKdparam_enum::MSK_DPAR_INTPNT_QO_TOL_NEAR_REL shows when
the MOSEK computed solution is optimal. This does not affect the number of it-
erations in MOSEK. We set it to 1.0 and use unified routines, which is used across
solvers, to measure optimality for fair comparison.

1The specification of MOSEK termination criteria can be obtained from: https://www.gurobi.com/
documentation/8.1/refman/parameters.html

2The specification of MOSEK’s termination criteria can be obtained from: https://docs.mosek.com/9.0/toolbox/
param-groups.html#doc-termination-param-pargroup

https://www.gurobi.com/documentation/8.1/refman/parameters.html
https://www.gurobi.com/documentation/8.1/refman/parameters.html
https://docs.mosek.com/9.0/toolbox/param-groups.html#doc-termination-param-pargroup
https://docs.mosek.com/9.0/toolbox/param-groups.html#doc-termination-param-pargroup

APPENDIX A. APPENDIX FOR TRANSFORMING SPARSE MATRIX COMPUTATIONS 120

A.3.3 OSQP

OSQP setting used in our experiments are: 3

1 settings->linsys_solver = MKL_PARDISO_SOLVER;

2 settings->eps_abs=eps;

3 settings->eps_rel=eps;

4 settings->max_iter=40000000;

5 settings->eps_prim_inf = eps;

6 settings->eps_dual_inf = eps;

7 settings->polish = is_polish; // is set to 1 for OSQP-polished.

8 settings->verbose = 0;

9 settings->time_limit = 2000.0;

OSQP’s default termination criteria is a relative measure, thus, we modify the
OSQP code to support an absolute termination criteria for fair evaluation. Line 725
and 737 of src/auxil.c are changed and instead of calling compute_pri_tol(work,
eps_abs, eps_rel) and compute_dua_tol(work, eps_abs, eps_rel) an absolute
threshold is used with eps_prim = eps_abs and eps_dual = eps_abs. Functions
compute_pri_tol(work, eps_abs, eps_rel) and compute_dua_tol(work, eps_abs,
eps_rel) compute a relative threshold for primal and dual variables respectively. The
modified code is provided with this document.

A.3.4 QL

For QL, we set the input eps parameter to the accuracy threshold eps.

A.4 Application-based breakdown for NASOQ

In this section, we show the failure rate and speedup of NASOQ compared to other
solvers. To show the speedup, we use a geometric mean (GM). Speedup numbers
are normalized to the geometric mean of NASOQ-Tuned, a larger the speedup value
corresponds to a slower solver compared to NASOQ-Tuned.

Tables 1-4 show the results for four classes of QP problems in our QP repository.
The total number of QP problems is 1513 which include 1308 contact simulation
(Table A.2), 53 Maros-Mészáros (Table A.3), 120 model predictive control(Table A.4),
and 32 object deformation and model reconstruction (Table A.5) problems.

3The osqp settings are available via this link, https://osqp.org/docs/interfaces/solver_settings.html.

https://osqp.org/docs/interfaces/solver_settings.html

APPENDIX A. APPENDIX FOR TRANSFORMING SPARSE MATRIX COMPUTATIONS 121

ε = 10−3 ε = 10−6 ε = 10−9

Failue rate
(%)

Speedup
(GM)

Failue rate
(%)

Speedup
(GM)

Failue rate
(%)

Speedup
(GM)

Gurobi 1.1 3.4 3.9 6.8 14.3 27.5
MOSEK 13.5 60.7 92.3 >3000 97.3 >3000
NASOQ-Fixed 0.4 1.2 1 1.7 2.3 1.4
NASOQ-Tuned 0 1 0 1 1.5 1
OSQP 2.2 3.3 3 3.9 14.4 26.3
OSQP-polished 0.9 1.7 2 2.8 14 24.8

Table A.1: All problems.

ε = 10−3 ε = 10−6 ε = 10−9

Failue rate
(%)

Speedup
(GM)

Failue rate
(%)

Speedup
(GM)

Failue rate
(%)

Speedup
(GM)

Gurobi 0.6 3.5 3.5 8.2 10.1 21.8
MOSEK 13.5 87.2 94.3 >3000 98.1 >3000
NASOQ-Fixed 0 1 0.2 1.2 0.8 1.1
NASOQ-Tuned 0 1 0 1 0.6 1
OSQP 1.2 2.5 1.1 2.1 13.8 42.6
OSQP-polished 0.6 1.8 0.6 1.7 13.8 42.9

Table A.2: Contact simulation problems.

ε = 10−3 ε = 10−6 ε = 10−9

Failue rate
(%)

Speedup
(GM)

Failue rate
(%)

Speedup
(GM)

Failue rate
(%)

Speedup
(GM)

Gurobi 13.2 9.8 15.1 8.9 58.5 2166.7
MOSEK 34 136.8 79.2 >3000 88.7 >3000
NASOQ-Fixed 9.4 3.2 24.5 28.8 35.8 25.3
NASOQ-Tuned 0 1 0 1 15.1 1
OSQP 24.5 31.9 45.3 989 47.1 182.7
OSQP-polished 9.4 1.9 35.8 183 40 45.2

Table A.3: Maros-Mészáros problems.

ε = 10−3 ε = 10−6 ε = 10−9

Failue rate
(%)

Speedup
(GM)

Failue rate
(%)

Speedup
(GM)

Failue rate
(%)

Speedup
(GM)

Gurobi 0 0.4 0.8 34.3 19.2 >3000
MOSEK 0.8 0.4 86.7 >3000 100 >3000
NASOQ-Fixed 0 1 0 1 0 1
NASOQ-Tuned 0 1 0 1 0 1
OSQP 3.3 12.7 2.5 119.3 2.5 123
OSQP-polished 0 61.1 0 3.4 0 4

Table A.4: Model Predictive Control (MPC) problems.

APPENDIX A. APPENDIX FOR TRANSFORMING SPARSE MATRIX COMPUTATIONS 122

ε = 10−3 ε = 10−6 ε = 10−9

Failue rate
(%)

Speedup
(GM)

Failue rate
(%)

Speedup
(GM)

Failue rate
(%)

Speedup
(GM)

Gurobi 6.3 10.4 12.5 24 90.7 >3000
MOSEK 28.1 231.3 50 >3000 68.8 >3000
NASOQ-Fixed 3.1 1.7 0 1 18.8 1
NASOQ-Tuned 0 1 0 1 18.8 1
OSQP 3.1 4.2 12.5 22.8 28.1 6.2
OSQP-polished 0 2.2 12.5 23.3 34.4 19.6

Table A.5: Model reconstruction and object deformation problems.

Bibliography

[1] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico
Kolter. “Differentiable Convex Optimization Layers”. In: Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019.

[2] Emmanuel Agullo, Olivier Beaumont, Lionel Eyraud-Dubois, and Suraj Kumar. “Are static
schedules so bad? A case study on Cholesky factorization”. In: Parallel and Distributed Pro-
cessing Symposium, 2016 IEEE International. IEEE. 2016, pp. 1021–1030.

[3] Emmanuel Agullo, Jim Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien Langou,
Hatem Ltaief, Piotr Luszczek, and Stanimire Tomov. “Numerical linear algebra on emerging
architectures: The PLASMA and MAGMA projects”. In: Journal of Physics: Conference
Series. Vol. 180. 1. IOP Publishing. 2009, p. 012037.

[4] José I. Aliaga, Joaquín Pérez, and Enrique S. Quintana-Ortí. “Systematic Fusion of CUDA
Kernels for Iterative Sparse Linear System Solvers”. In: Euro-Par 2015: Parallel Process-
ing. Ed. by Jesper Larsson Träff, Sascha Hunold, and Francesco Versaci. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 675–686. isbn: 978-3-662-48096-0.

[5] Martin S Alnæs, Anders Logg, Kristian B Ølgaard, Marie E Rognes, and Garth NWells. “Uni-
fied form language: A domain-specific language for weak formulations of partial differential
equations”. In: ACM Transactions on Mathematical Software (TOMS) 40.2 (2014), p. 9.

[6] Patrick R Amestoy, Iain S Duff, and J-Y L’Excellent. “Multifrontal parallel distributed sym-
metric and unsymmetric solvers”. In: Computer methods in applied mechanics and engineering
184.2 (2000), pp. 501–520.

[7] Patrick R Amestoy, Iain S Duff, Jean-Yves L’Excellent, and Jacko Koster. “A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling”. In: SIAM Journal on
Matrix Analysis and Applications 23.1 (2001), pp. 15–41.

[8] Patrick R Amestoy, Abdou Guermouche, Jean-Yves L’Excellent, and Stéphane Pralet. “Hy-
brid scheduling for the parallel solution of linear systems”. In: Parallel computing 32.2 (2006),
pp. 136–156.

[9] Brandon Amos and J. Zico Kolter. “OptNet: Differentiable Optimization as a Layer in Neu-
ral Networks”. In: Proceedings of the 34th International Conference on Machine Learning -
Volume 70. ICML’17. Sydney, NSW, Australia: JMLR.org, 2017.

[10] Corinne Ancourt and François Irigoin. “Scanning polyhedra with DO loops”. In: ACM Sigplan
Notices. Vol. 26. 7. ACM. 1991, pp. 39–50.

123

BIBLIOGRAPHY 124

[11] M. Arioli, I. S. Duff, S. Gratton, and S. Pralet. “A Note on GMRES Preconditioned by a
Perturbed LDLT Decomposition with Static Pivoting”. In: SIAM J. Sci. Comput. 29.5 (Sept.
2007). issn: 1064-8275.

[12] Cleve Ashcraft and Roger G Grimes. “SPOOLES: An Object-Oriented Sparse Matrix Li-
brary.” In: PPSC. 1999.

[13] Yunfei Bai, M. Danny Kaufman, C. Karen Liu, and Jovan Popović. “Artistic-dynamics for
2D animation”. In: ACM Transactions on Graphics (SIGGRAPH 2016). 2016.

[14] AS El-Bakry, Richard A Tapia, T Tsuchiya, and Yin Zhang. “On the formulation and theory
of the Newton interior-point method for nonlinear programming”. In: Journal of Optimization
Theory and Applications 89.3 (1996).

[15] Jernej Barbic. “Real-Time Reduced Large-Deformation Models and Distributed Contact for
Computer Graphics and Haptics”. PhD thesis. USA, 2007. isbn: 9780549203131.

[16] Muthu Manikandan Baskaran, Nagavijayalakshmi Vydyanathan, Uday Kumar Reddy Bond-
hugula, J. Ramanujam, Atanas Rountev, and P. Sadayappan. “Compiler-assisted dynamic
scheduling for effective parallelization of loop nests on multicore processors”. In: PPOPP
44.4 (2009), pp. 219–228.

[17] Christopher Batty, Florence Bertails, and Robert Bridson. “A Fast Variational Framework for
Accurate Solid-Fluid Coupling”. In: ACM Trans. Graph. 26.3 (July 2007), 100–es. issn: 0730-
0301. doi: 10.1145/1276377.1276502. url: https://doi.org/10.1145/1276377.1276502.

[18] Michele Benzi, Jane K Cullum, and Miroslav Tuma. “Robust approximate inverse precondi-
tioning for the conjugate gradient method”. In: SIAM Journal on Scientific Computing 22.4
(2000), pp. 1318–1332.

[19] Michele Benzi, Gene H Golub, and Jörg Liesen. “Numerical solution of saddle point problems”.
In: Acta numerica 14 (2005).

[20] Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary Devito, Matthew Fisher,
Philip Levis, and Pat Hanrahan. “Ebb: A DSL for Physical Simulation on CPUs and GPUs”.
In: ACM Trans. Graph. 35.2 (May 2016), 21:1–21:12. issn: 0730-0301. doi: 10.1145/2892632.
url: http://doi.acm.org/10.1145/2892632.

[21] Uday Bondhugula, A Hartono, J Ramanujam, and P Sadayappan. “Pluto: A practical and
fully automatic polyhedral program optimization system”. In: Proceedings of the ACM SIG-
PLAN 2008 Conference on Programming Language Design and Implementation (PLDI 08),
Tucson, AZ (June 2008). Citeseer. 2008.

[22] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. “Distributed
Optimization and Statistical Learning via the Alternating Direction Method of Multipliers”.
In: Foundations and Trends in Machine Learning 3.1 (2011).

[23] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[24] Erin Claire Carson. “Communication-avoiding Krylov subspace methods in theory and prac-
tice”. PhD thesis. UC Berkeley, 2015.

https://doi.org/10.1145/1276377.1276502
https://doi.org/10.1145/1276377.1276502
https://doi.org/10.1145/2892632
http://doi.acm.org/10.1145/2892632

BIBLIOGRAPHY 125

[25] Chun Chen. “Polyhedra scanning revisited”. In: ACM SIGPLAN Notices 47.6 (2012), pp. 499–
508.

[26] Yanqing Chen, Timothy A Davis, William W Hager, and Sivasankaran Rajamanickam. “Al-
gorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate”.
In: ACM Transactions on Mathematical Software (TOMS) 35.3 (2008), p. 22.

[27] Kazem Cheshmi, Leila Cheshmi, and Maryam Mehri Dehnavi. “Sparsity-Aware Storage For-
mat Selection”. In: 2018 International Conference on High Performance Computing Simula-
tion (HPCS). 2018, pp. 1034–1037. doi: 10.1109/HPCS.2018.00162.

[28] Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi. “ParSy:
Inspection and Transformation of Sparse Matrix Computations for Parallelism”. In: Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage,
and Analysis. SC ’18. Dallas, Texas: IEEE Press, 2018.

[29] Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and MaryamMehri Dehnavi. “Sympiler:
Transforming Sparse Matrix Codes by Decoupling Symbolic Analysis”. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analy-
sis. SC ’17. Denver, Colorado: ACM, 2017. isbn: 978-1-4503-5114-0.

[30] Kazem Cheshmi, Danny M Kaufman, Shoaib Kamil, and Maryam Mehri Dehnavi. “NASOQ:
numerically accurate sparsity-oriented QP solver”. In: ACM Transactions on Graphics (TOG)
39.4 (2020), pp. 96–1.

[31] Edward G Coffman Jr, Michael R Garey, and David S Johnson. “An application of bin-
packing to multiprocessor scheduling”. In: SIAM Journal on Computing 7.1 (1978), pp. 1–
17.

[32] Timothy A Davis. “Algorithm 1000: SuiteSparse: GraphBLAS: Graph Algorithms in the Lan-
guage of Sparse Linear Algebra”. In: ACM Transactions on Mathematical Software (TOMS)
45.4 (2019).

[33] Timothy A Davis. “Algorithm 832: UMFPACK V4. 3—an unsymmetric-pattern multifrontal
method”. In: ACM Transactions on Mathematical Software (TOMS) 30.2 (2004), pp. 196–
199.

[34] Timothy A Davis. “Algorithm 849: A concise sparse Cholesky factorization package”. In: ACM
Transactions on Mathematical Software (TOMS) 31.4 (2005), pp. 587–591.

[35] Timothy A Davis. “Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing
sparse QR factorization”. In: ACM Transactions on Mathematical Software (TOMS) 38.1
(2011), p. 8.

[36] Timothy A Davis. “Algorithm 930: FACTORIZE: An object-oriented linear system solver for
MATLAB”. In: ACM Transactions on Mathematical Software (TOMS) 39.4 (2013), p. 28.

[37] Timothy A Davis. Direct methods for sparse linear systems. Vol. 2. Siam, 2006.

[38] Timothy A Davis and William W Hager. “Dynamic supernodes in sparse Cholesky update/-
downdate and triangular solves”. In: ACM Transactions on Mathematical Software (TOMS)
35.4 (2009), p. 27.

https://doi.org/10.1109/HPCS.2018.00162

BIBLIOGRAPHY 126

[39] Timothy A Davis and William W Hager. “Modifying a sparse Cholesky factorization”. In:
SIAM Journal on Matrix Analysis and Applications 20.3 (1999).

[40] Timothy A Davis and William W Hager. “Row modifications of a sparse Cholesky factoriza-
tion”. In: SIAM Journal on Matrix Analysis and Applications 26.3 (2005), pp. 621–639.

[41] Timothy A Davis and Yifan Hu. “The University of Florida sparse matrix collection”. In:
ACM Transactions on Mathematical Software (TOMS) 38.1 (2011), p. 1.

[42] Timothy A. Davis and Ekanathan Palamadai Natarajan. “Algorithm 907: KLU, A Direct
Sparse Solver for Circuit Simulation Problems”. In: ACM Trans. Math. Softw. 37.3 (Sept.
2010), 36:1–36:17. issn: 0098-3500. doi: 10.1145/1824801.1824814. url: http://doi.acm.
org/10.1145/1824801.1824814.

[43] Maryam Mehri Dehnavi, David M Fernández, and Dennis Giannacopoulos. “Enhancing the
performance of conjugate gradient solvers on graphic processing units”. In: IEEE Transactions
on Magnetics 47.5 (2011), pp. 1162–1165.

[44] James W Demmel, Stanley C Eisenstat, John R Gilbert, Xiaoye S Li, and Joseph WH Liu.
“A supernodal approach to sparse partial pivoting”. In: SIAM Journal on Matrix Analysis
and Applications 20.3 (1999), pp. 720–755.

[45] James W Demmel, John R Gilbert, and Xiaoye S Li. “An asynchronous parallel supern-
odal algorithm for sparse gaussian elimination”. In: SIAM Journal on Matrix Analysis and
Applications 20.4 (1999), pp. 915–952.

[46] Elizabeth D Dolan and Jorge J Moré. “Benchmarking optimization software with performance
profiles”. In: Mathematical programming 91.2 (2002).

[47] A. Domahidi, E. Chu, and S. Boyd. “ECOS: An SOCP solver for embedded systems”. In:
2013 European Control Conference (ECC). 2013.

[48] Richard C Dorf. Electronics, power electronics, optoelectronics, microwaves, electromagnetics,
and radar. CRC press, 2006.

[49] Iain S Duff, Nick IM Gould, John K Reid, Jennifer A Scott, and Kathryn Turner. “The
factorization of sparse symmetric indefinite matrices”. In: IMA Journal of Numerical Analysis
11.2 (1991), pp. 181–204.

[50] Iain S Duff and John K Reid. “The multifrontal solution of indefinite sparse symmetric linear”.
In: ACM Transactions on Mathematical Software (TOMS) 9.3 (1983), pp. 302–325.

[51] Iain S Duff and John Ker Reid. “The design of MA48: a code for the direct solution of sparse
unsymmetric linear systems of equations”. In: ACM Transactions on Mathematical Software
(TOMS) 22.2 (1996), pp. 187–226.

[52] Iain S. Duff. “MA57—a Code for the Solution of Sparse Symmetric Definite and Indefinite
Systems”. In: ACM Trans. Math. Softw. 30.2 (June 2004). issn: 0098-3500.

https://doi.org/10.1145/1824801.1824814
http://doi.acm.org/10.1145/1824801.1824814
http://doi.acm.org/10.1145/1824801.1824814

BIBLIOGRAPHY 127

[53] Marek Dvorožňák, Saman Sepehri Nejad, Ondřej Jamriška, Alec Jacobson, Ladislav Kavan,
and Daniel Sýkora. “Seamless Reconstruction of Part-Based High-Relief Models from Hand-
Drawn Images”. In: Proceedings of the Joint Symposium on Computational Aesthetics and
Sketch-Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering. Ex-
pressive ’18. Victoria, British Columbia, Canada: Association for Computing Machinery, 2018.
isbn: 9781450358927.

[54] Joseph M Elble and Nikolaos V Sahinidis. “Scaling linear optimization problems prior to
application of the simplex method”. In: Computational Optimization and Applications 52.2
(2012), pp. 345–371.

[55] Perry A Emrath, S Chosh, and David A Padua. “Event synchronization analysis for debugging
parallel programs”. In: Proceedings of the 1989 ACM/IEEE conference on Supercomputing.
ACM. 1989, pp. 580–588.

[56] Kenny Erleben. “Numerical methods for linear complementarity problems in physics-based
animation”. In: Acm Siggraph 2013 Courses. 2013.

[57] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock, and Moritz
Diehl. “qpOASES: A parametric active-set algorithm for quadratic programming”. In: Math-
ematical Programming Computation 6.4 (2014).

[58] M Fesanghary, Mehrdad Mahdavi, M Minary-Jolandan, and Y Alizadeh. “Hybridizing har-
mony search algorithm with sequential quadratic programming for engineering optimization
problems”. In: Computer methods in applied mechanics and engineering 197.33-40 (2008).

[59] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[60] Michael J. Flynn. “Some Computer Organizations and Their Effectiveness”. In: IEEE Trans-
actions on Computers C-21.9 (1972), pp. 948–960. doi: 10.1109/TC.1972.5009071.

[61] Alan George and Joseph W Liu. “Computer solution of large sparse positive definite”. In:
(1981).

[62] Alan George and Joseph WH Liu. “The design of a user interface for a sparse matrix package”.
In: ACM Transactions on Mathematical Software (TOMS) 5.2 (1979), pp. 139–162.

[63] Alan George, Joseph WH Liu, and Esmond Ng. “Communication results for parallel sparse
Cholesky factorization on a hypercube”. In: Parallel Computing 10.3 (1989), pp. 287–298.

[64] E. Michael Gertz and Stephen J. Wright. “Object-Oriented Software for Quadratic Program-
ming”. In: ACM Trans. Math. Softw. 29.1 (Mar. 2003). issn: 0098-3500.

[65] Pieter Ghysels and Wim Vanroose. “Hiding global synchronization latency in the precondi-
tioned conjugate gradient algorithm”. In: Parallel Computing 40.7 (2014), pp. 224–238.

[66] John R Gilbert and Tim Peierls. “Sparse partial pivoting in time proportional to arithmetic
operations”. In: SIAM Journal on Scientific and Statistical Computing 9.5 (1988), pp. 862–
874.

[67] John R Gilbert and Robert Schreiber. “Highly parallel sparse Cholesky factorization”. In:
SIAM Journal on Scientific and Statistical Computing 13.5 (1992), pp. 1151–1172.

[68] Philip E Gill, Walter Murray, Michael A Saunders, and Elizabeth Wong. User guide for
SQOPT 7: Software for large-scale linear and quadratic programming. 2005.

https://doi.org/10.1109/TC.1972.5009071

BIBLIOGRAPHY 128

[69] Philip E Gill, Walter Murray, Michael A Saunders, and Margaret HWright. “Inertia-controlling
methods for general quadratic programming”. In: Siam Review 33.1 (1991).

[70] Donald Goldfarb and Ashok Idnani. “A numerically stable dual method for solving strictly
convex quadratic programs”. In: Mathematical programming 27.1 (1983).

[71] Gene H Golub and Charles F Van Loan. Matrix computations. Vol. 3. JHU press, 2012.

[72] Jacek Gondzio and Andreas Grothey. “Solving nonlinear financial planning problems with 109
decision variables on massively parallel architectures”. In:WIT Transactions on Modelling and
Simulation 43 (2006).

[73] Nicholas Gould. An introduction to algorithms for continuous optimization. 2006.

[74] Nicholas IM Gould, Mary E Hribar, and Jorge Nocedal. “On the solution of equality con-
strained quadratic programming problems arising in optimization”. In: SIAM Journal on
Scientific Computing 23.4 (2001).

[75] Nicholas IM Gould, Dominique Orban, and Philippe L Toint. “GALAHAD, a library of
thread-safe Fortran 90 packages for large-scale nonlinear optimization”. In: ACM Transac-
tions on Mathematical Software (TOMS) 29.4 (2003).

[76] Nicholas IM Gould, Jennifer A Scott, and Yifan Hu. “A numerical evaluation of sparse direct
solvers for the solution of large sparse symmetric linear systems of equations”. In: ACM
Transactions on Mathematical Software (TOMS) 33.2 (2007), p. 10.

[77] R Govindarajan and Jayvant Anantpur. “Runtime dependence computation and execution
of loops on heterogeneous systems”. In: Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). IEEE Computer Society. 2013,
pp. 1–10.

[78] Laura Grigori and Sophie Moufawad. “Communication avoiding ILU0 preconditioner”. In:
SIAM Journal on Scientific Computing 37.2 (2015), pp. C217–C246.

[79] Gaël Guennebaud and Benoit Jacob. “Eigen”. In: URl: http://eigen. tuxfamily. org (2010).

[80] John A Gunnels, Fred G Gustavson, Greg M Henry, and Robert A Van De Geijn. “FLAME:
Formal linear algebra methods environment”. In: ACM Transactions on Mathematical Soft-
ware (TOMS) 27.4 (2001), pp. 422–455.

[81] Anshul Gupta, George Karypis, and Vipin Kumar. “Highly scalable parallel algorithms for
sparse matrix factorization”. In: IEEE Transactions on Parallel and Distributed Systems 8.5
(1997), pp. 502–520.

[82] Fred G Gustavson, Werner Liniger, and R Willoughby. “Symbolic generation of an optimal
Crout algorithm for sparse systems of linear equations”. In: Journal of the ACM (JACM)
17.1 (1970), pp. 87–109.

[83] William W Hager. “Updating the inverse of a matrix”. In: SIAM review 31.2 (1989).

[84] Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien. “Updated Sparse
Cholesky Factors for Corotational Elastodynamics”. In: ACM Trans. Graph. 31.5 (Sept. 2012).
issn: 0730-0301.

[85] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach.
Elsevier, 2017.

BIBLIOGRAPHY 129

[86] Pascal Hénon, Pierre Ramet, and Jean Roman. “PASTIX: a high-performance parallel direct
solver for sparse symmetric positive definite systems”. In: Parallel Computing 28.2 (2002),
pp. 301–321.

[87] Philipp Herholz and Marc Alexa. “Factor Once: Reusing Cholesky Factorizations on Sub-
Meshes”. In: ACM Trans. Graph. 37.6 (Dec. 2018). issn: 0730-0301.

[88] Philipp Herholz, Timothy A. Davis, and Marc Alexa. “Localized Solutions of Sparse Linear
Systems for Geometry Processing”. In: ACM Trans. Graph. 36.6 (Nov. 2017). issn: 0730-0301.

[89] Julien Herrmann, M Yusuf Ozkaya, Bora Uçar, Kamer Kaya, and Ümit VV Çatalyürek.
“Multilevel algorithms for acyclic partitioning of directed acyclic graphs”. In: SIAM Journal
on Scientific Computing 41.4 (2019), A2117–A2145.

[90] Toby Heyn, Mihai Anitescu, Alessandro Tasora, and Dan Negrut. “Using Krylov subspace
and spectral methods for solving complementarity problems in many-body contact dynamics
simulation”. In: International Journal for Numerical Methods in Engineering 95.7 (2013).

[91] Mark Frederick Hoemmen et al. “Communication-avoiding Krylov subspace methods”. In:
(2010).

[92] Jonathan D. Hogg and Jennifer A. Scott. “Pivoting Strategies for Tough Sparse Indefinite
Systems”. In: ACM Trans. Math. Softw. 40.1 (Oct. 2013). issn: 0098-3500.

[93] Justin Holewinski, Louis-Noël Pouchet, and P. Sadayappan. “High-performance Code Gen-
eration for Stencil Computations on GPU Architectures”. In: Proceedings of the 26th ACM
International Conference on Supercomputing. ICS ’12. San Servolo Island, Venice, Italy: ACM,
2012, pp. 311–320. isbn: 978-1-4503-1316-2. doi: 10.1145/2304576.2304619.

[94] Hanh M Huynh. A large-scale quadratic programming solver based on block-LU updates of the
KKT system. Tech. rep. STANFORD UNIV CA DEPT OF COMPUTER SCIENCE, 2008.

[95] Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. “Bounded Biharmonic Weights
for Real-Time Deformation”. In: ACM Trans. Graph. SIGGRAPH ’11 (July 2011).

[96] Alec Jacobson, Daniele Panozzo, et al. libigl: A simple C++ geometry processing library.
https://libigl.github.io/. 2018.

[97] Carlo Janna, Massimiliano Ferronato, and Giuseppe Gambolati. “The use of supernodes in
factored sparse approximate inverse preconditioning”. In: SIAM Journal on Scientific Com-
puting 37.1 (2015), pp. C72–C94.

[98] David S Johnson. “Fast algorithms for bin packing”. In: Journal of Computer and System
Sciences 8.3 (1974), pp. 272–314.

[99] Neil D Jones, Carsten K Gomard, and Peter Sestoft. Partial evaluation and automatic program
generation. Peter Sestoft, 1993.

[100] Sam Kamin, María Jesús Garzarán, Barış Aktemur, Danqing Xu, Buse Yılmaz, and Zhongbo
Chen. “Optimization by Runtime Specialization for Sparse Matrix-Vector Multiplication”. In:
SIGPLAN Not. 50.3 (Sept. 2014), pp. 93–102. issn: 0362-1340. doi: 10.1145/2775053.
2658773. url: https://doi.org/10.1145/2775053.2658773.

[101] G. Karypis. “METIS : Unstructured graph partitioning and sparse matrix ordering system”.
In: Technical Report (1997).

https://doi.org/10.1145/2304576.2304619
https://doi.org/10.1145/2775053.2658773
https://doi.org/10.1145/2775053.2658773
https://doi.org/10.1145/2775053.2658773

BIBLIOGRAPHY 130

[102] George Karypis and Vipin Kumar. “A high performance sparse Cholesky factorization algo-
rithm for scalable parallel computers”. In: Frontiers of Massively Parallel Computation, 1995.
Proceedings. Frontiers’ 95., Fifth Symposium on the. IEEE. 1995, pp. 140–147.

[103] George Karypis and Vipin Kumar. “A software package for partitioning unstructured graphs,
partitioning meshes, and computing fill-reducing orderings of sparse matrices”. In: Univer-
sity of Minnesota, Department of Computer Science and Engineering, Army HPC Research
Center, Minneapolis, MN (1998).

[104] Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. “Staggered Pro-
jections for Frictional Contact in Multibody Systems”. In: ACM Trans. Graph. SIGGRAPH
Asia ’08 (Dec. 2008).

[105] Wayne Kelly. “Optimization within a unified transformation framework”. In: (1998).

[106] David S Kershaw. “The incomplete Cholesky-conjugate gradient method for the iterative
solution of systems of linear equations”. In: Journal of computational physics 26.1 (1978),
pp. 43–65.

[107] Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David IW Levin, Shinjiro Sueda,
Desai Chen, Etienne Vouga, Danny M Kaufman, Gurtej Kanwar, Wojciech Matusik, and
Saman Amarasinghe. “Simit: A language for physical simulation”. In: ACM Transactions on
Graphics (TOG) 35.2 (2016), p. 20.

[108] Christopher D Krieger, Michelle Mills Strout, Catherine Olschanowsky, Andrew Stone, Stephen
Guzik, Xinfeng Gao, Carlo Bertolli, Paul HJ Kelly, Gihan Mudalige, Brian Van Straalen, et
al. “Loop chaining: A programming abstraction for balancing locality and parallelism”. In:
2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and
Phd Forum. IEEE. 2013, pp. 375–384.

[109] David I.W. Levin. GAUSS Library. https://github.com/dilevin/GAUSS. 2019.

[110] Ruipeng Li and Yousef Saad. “GPU-accelerated preconditioned iterative linear solvers”. In:
The Journal of Supercomputing 63.2 (2013), pp. 443–466.

[111] Xiaoye S Li. “An overview of SuperLU: Algorithms, implementation, and user interface”. In:
ACM Transactions on Mathematical Software (TOMS) 31.3 (2005), pp. 302–325.

[112] Xiaoye S Li and James W Demmel. “SuperLU_DIST: A scalable distributed-memory sparse
direct solver for unsymmetric linear systems”. In: ACM Transactions on Mathematical Soft-
ware (TOMS) 29.2 (2003), pp. 110–140.

[113] Douglas K Lilly. “On the computational stability of numerical solutions of time-dependent
non-linear geophysical fluid dynamics problems”. In: Mon. Wea. Rev 93.1 (1965), pp. 11–26.

[114] Amy W Lim, Gerald I Cheong, and Monica S Lam. “An affine partitioning algorithm to
maximize parallelism and minimize communication”. In: Proceedings of the 13th international
conference on Supercomputing. ACM. 1999, pp. 228–237.

BIBLIOGRAPHY 131

[115] Bangtian Liu, Kazem Cheshmi, Saeed Soori, Michelle Mills Strout, and Maryam Mehri
Dehnavi. “MatRox: Modular Approach for Improving Data Locality in Hierarchical (Mat)Rix
App(Rox)Imation”. In: Proceedings of the 25th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. PPoPP ’20. San Diego, California: Association for Com-
puting Machinery, 2020, pp. 389–402. isbn: 9781450368186. doi: 10.1145/3332466.3374548.
url: https://doi.org/10.1145/3332466.3374548.

[116] Joseph W. H. Liu. “The Role of Elimination Trees in Sparse Factorization”. In: SIAM J.
Matrix Anal. Appl. 11.1 (Jan. 1990), pp. 134–172. issn: 0895-4798. doi: 10.1137/0611010.
url: http://dx.doi.org/10.1137/0611010.

[117] Weifeng Liu, Ang Li, Jonathan Hogg, Iain S Duff, and Brian Vinter. “A synchronization-
free algorithm for parallel sparse triangular solves”. In: European Conference on Parallel
Processing. Springer. 2016, pp. 617–630.

[118] José A Zevallos Luna, Alexandre Siligaris, Cédric Pujol, and Laurent Dussopt. “A packaged
60 GHz low-power transceiver with integrated antennas for short-range communications.” In:
Radio and Wireless Symposium. 2013, pp. 355–357.

[119] Fabio Luporini, David A Ham, and Paul HJ Kelly. “An algorithm for the optimization of
finite element integration loops”. In: arXiv preprint arXiv:1604.05872 (2016).

[120] Christopher Mario Maes. “A regularized active-set method for sparse convex quadratic pro-
gramming”. PhD thesis. USA: Stanford University, 2011.

[121] Istvan Maros and Csaba Mészáros. “A repository of convex quadratic programming problems”.
In: Optimization Methods and Software 11.1-4 (1999).

[122] Jacob Mattingley and Stephen Boyd. “CVXGEN: A code generator for embedded convex
optimization”. In: Optimization and Engineering 13.1 (2012).

[123] M. MehriDehnavi, Y. El-Kurdi, J. Demmel, and D. Giannacopoulos. “Communication-Avoiding
Krylov Techniques on Graphic Processing Units”. In: IEEE Transactions on Magnetics 49.5
(2013), pp. 1749–1752. doi: 10.1109/TMAG.2013.2244861.

[124] Duane Merrill and Michael Garland. “Merge-based parallel sparse matrix-vector multipli-
cation”. In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Press. 2016, p. 58.

[125] Hans Mittelmann. Benchmarks for Optimization Software. Apr. 2020. url: http://plato.
asu.edu/bench.html.

[126] Mahdi Soltan Mohammadi, Kazem Cheshmi, Maryam Mehri Dehnavi, Anand Venkat, To-
mofumi Yuki, and Michelle Mills Strout. “Extending Index-Array Properties for Data De-
pendence Analysis”. In: Languages and Compilers for Parallel Computing. Ed. by Mary Hall
and Hari Sundar. Cham: Springer International Publishing, 2019, pp. 78–93. isbn: 978-3-030-
34627-0.

[127] Mahdi Soltan Mohammadi, Tomofumi Yuki, Kazem Cheshmi, Eddie C Davis, Mary Hall,
Maryam Mehri Dehnavi, Payal Nandy, Catherine Olschanowsky, Anand Venkat, and Michelle
Mills Strout. “Sparse computation data dependence simplification for efficient compiler-generated
inspectors”. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. 2019, pp. 594–609.

https://doi.org/10.1145/3332466.3374548
https://doi.org/10.1145/3332466.3374548
https://doi.org/10.1137/0611010
http://dx.doi.org/10.1137/0611010
https://doi.org/10.1109/TMAG.2013.2244861
http://plato.asu.edu/bench.html
http://plato.asu.edu/bench.html

BIBLIOGRAPHY 132

[128] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick. “Minimizing communication in
sparse matrix solvers”. In: Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis. 2009, pp. 1–12. doi: 10.1145/1654059.1654096.

[129] ApS Mosek. The MOSEK optimization toolbox for MATLAB manual. 2015.

[130] Ailson P de Moura and Adriano Aron F de Moura. “Newton–Raphson power flow with con-
stant matrices: a comparison with decoupled power flow methods”. In: International Journal
of Electrical Power & Energy Systems 46 (2013), pp. 108–114.

[131] Maxim Naumov. “Parallel incomplete-LU and Cholesky factorization in the preconditioned
iterative methods on the GPU”. In: NVIDIA Technical Report NVR-2012-003 (2012).

[132] Maxim Naumov. “Parallel solution of sparse triangular linear systems in the preconditioned
iterative methods on the GPU”. In: NVIDIA Corp., Westford, MA, USA, Tech. Rep. NVR-
2011 1 (2011).

[133] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business
Media, 2006.

[134] Gurobi Optimization. Inc.,"Gurobi optimizer reference manual," 2015. 2014.

[135] Abhishek Goud Pandala, Yanran Ding, and Hae-Won Park. “qpSWIFT: A Real-Time Sparse
Quadratic Program Solver for Robotic Applications”. In: IEEE Robotics and Automation
Letters 4.4 (2019).

[136] M Papadrakakis and N Bitoulas. “Accuracy and effectiveness of preconditioned conjugate
gradient algorithms for large and ill-conditioned problems”. In: Computer methods in applied
mechanics and engineering 109.3-4 (1993), pp. 219–232.

[137] Jongsoo Park, Mikhail Smelyanskiy, Narayanan Sundaram, and Pradeep Dubey. “Sparsifying
synchronization for high-performance shared-memory sparse triangular solver”. In: Interna-
tional Supercomputing Conference. Springer. 2014, pp. 124–140.

[138] Roger P Pawlowski, John N Shadid, Joseph P Simonis, and Homer F Walker. “Globalization
techniques for Newton–Krylov methods and applications to the fully coupled solution of the
Navier–Stokes equations”. In: SIAM review 48.4 (2006), pp. 700–721.

[139] François Pellegrini and Jean Roman. “Scotch: A software package for static mapping by dual
recursive bipartitioning of process and architecture graphs”. In: International Conference on
High-Performance Computing and Networking. Springer. 1996, pp. 493–498.

[140] Lukas Polok, Viorela Ila, Marek Solony, Pavel Smrz, and Pavel Zemcik. “Incremental Block
Cholesky Factorization for Nonlinear Least Squares in Robotics.” In: Robotics: Science and
Systems. 2013.

[141] Alex Pothen and Chunguang Sun. “A mapping algorithm for parallel sparse Cholesky factor-
ization”. In: SIAM Journal on Scientific Computing 14.5 (1993), pp. 1253–1257.

[142] Alex Pothen and Sivan Toledo. Elimination Structures in Scientific Computing. 2004.

[143] Michael James David Powell. “On the quadratic programming algorithm of Goldfarb and Id-
nani”. In:Mathematical Programming Essays in Honor of George B. Dantzig Part II. Springer,
1985.

https://doi.org/10.1145/1654059.1654096

BIBLIOGRAPHY 133

[144] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan
Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert
W. Johnson, and Nicholas Rizzolo. “SPIRAL: Code Generation for DSP Transforms”. In: Pro-
ceedings of the IEEE, special issue on “Program Generation, Optimization, and Adaptation”
93.2 (2005), pp. 232–275.

[145] Fabien Quilleré, Sanjay Rajopadhye, and Doran Wilde. “Generation of efficient nested loops
from polyhedra”. In: International Journal of Parallel Programming 28.5 (2000), pp. 469–498.

[146] Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. “Scalable
locally injective mappings”. In: ACM Transactions on Graphics (TOG) 36.2 (2017), p. 16.

[147] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and
Saman Amarasinghe. “Halide: a language and compiler for optimizing parallelism, locality,
and recomputation in image processing pipelines”. In: ACM SIGPLAN Notices 48.6 (2013),
pp. 519–530.

[148] Lawrence Rauchwerger, Nancy M Amato, and David A Padua. “Run-time methods for par-
allelizing partially parallel loops”. In: Proceedings of the 9th international conference on Su-
percomputing. ACM. 1995, pp. 137–146.

[149] L. Righetti and S. Schaal. “Quadratic programming for inverse dynamics with optimal distri-
bution of contact forces”. In: 2012 12th IEEE-RAS International Conference on Humanoid
Robots (Humanoids 2012). 2012.

[150] Hongbo Rong, Jongsoo Park, Lingxiang Xiang, Todd A Anderson, and Mikhail Smelyanskiy.
“Sparso: Context-driven optimizations of sparse linear algebra”. In: Proceedings of the 2016
International Conference on Parallel Architectures and Compilation. ACM. 2016, pp. 247–
259.

[151] Karl Rupp, Philippe Tillet, Florian Rudolf, Josef Weinbub, Andreas Morhammer, Tibor
Grasser, Ansgar Jungel, and Siegfried Selberherr. “ViennaCL—linear algebra library for
multi-and many-core architectures”. In: SIAM Journal on Scientific Computing 38.5 (2016),
S412–S439.

[152] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[153] Yousef Saad and Andrei V Malevsky. “P-Sparslib: a portable library of distributed memory
sparse iterative solvers”. In: Proceedings of Parallel Computing Technologies (PaCT-95), 3-rd
international conference, St. Petersburg. Citeseer. 1995.

[154] Olaf Schenk and Klaus Gärtner. “On fast factorization pivoting methods for sparse symmetric
indefinite systems.” eng. In: ETNA. Electronic Transactions on Numerical Analysis [electronic
only] 23 (2006). url: http://eudml.org/doc/127439.

[155] Olaf Schenk and Klaus Gärtner. “Solving unsymmetric sparse systems of linear equations
with PARDISO”. In: Future Generation Computer Systems 20.3 (2004), pp. 475–487.

[156] Olaf Schenk and Klaus Gärtner. “Two-level dynamic scheduling in PARDISO: Improved
scalability on shared memory multiprocessing systems”. In: Parallel Computing 28.2 (2002),
pp. 187–197.

http://eudml.org/doc/127439

BIBLIOGRAPHY 134

[157] Olaf Schenk, Klaus Gärtner, and Wolfgang Fichtner. “Efficient sparse LU factorization with
left-right looking strategy on shared memory multiprocessors”. In: BIT Numerical Mathemat-
ics 40.1 (2000), pp. 158–176.

[158] Olaf Schenk, Klaus Gärtner, Wolfgang Fichtner, and Andreas Stricker. “PARDISO: a high-
performance serial and parallel sparse linear solver in semiconductor device simulation”. In:
Future Generation Computer Systems 18.1 (2001), pp. 69–78.

[159] K Schittkowski. “QL: A Fortran code for convex quadratic programming-User guide”. In:
Report, Department of Mathematics, University of Bayreuth (2003).

[160] Michele Segata. MPC Library. https://github.com/michele-segata/mpclib. 2019.

[161] Kai Shen, Tao Yang, and Xiangmin Jiao. “S+: Efficient 2D sparse LU factorization on parallel
machines”. In: SIAM Journal on Matrix Analysis and Applications 22.1 (2000), pp. 282–305.

[162] Andrew H Sherman. “Algorithms for sparse Gaussian elimination with partial pivoting”. In:
ACM Transactions on Mathematical Software (TOMS) 4.4 (1978), pp. 330–338.

[163] Jaewook Shin, Mary W Hall, Jacqueline Chame, Chun Chen, Paul F Fischer, and Paul D
Hovland. “Speeding up Nek5000 with autotuning and specialization”. In: Proceedings of the
24th ACM International Conference on Supercomputing. ACM. 2010, pp. 253–262.

[164] Breannan Smith, Danny M. Kaufman, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun.
“Reflections on Simultaneous Impact”. In: ACM Trans. Graph. 31.4 (July 2012). issn: 0730-
0301.

[165] Intel Software. OpenMP potential gain definition in intel VTune. 2018. url: https : / /

software . intel . com / content / www / us / en / develop / documentation / vtune - help /

top/reference/cpu- metrics- reference/openmp- potential- gain.html (visited on
05/28/2018).

[166] Mahdi Soltan Mohammadi. “Automatic Sparse Computation Parallelization by Utilizing
Domain-Specific Knowledge in Data Dependence Analysis”. English. Copyright - Database
copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying
works; Last updated - 2021-05-13. PhD thesis. 2020, p. 109. isbn: 9798678143679. url:
http://myaccess.library.utoronto.ca/login?qurl=https%3A%2F%2Fwww.proquest.

com%2Fdissertations-theses%2Fautomatic-sparse-computation-parallelization%

2Fdocview%2F2451139805%2Fse-2%3Faccountid%3D14771.

[167] Fengguang Song, Asim YarKhan, and Jack Dongarra. “Dynamic task scheduling for linear
algebra algorithms on distributed-memory multicore systems”. In: High Performance Com-
puting Networking, Storage and Analysis, Proceedings of the Conference on. IEEE. 2009,
pp. 1–11.

[168] Saeed Soori, Aditya Devarakonda, Zachary Blanco, James Demmel, Mert Gurbuzbalaban, and
Maryam Mehri Dehnavi. “Reducing communication in proximal Newton methods for sparse
least squares problems”. In: Proceedings of the 47th International Conference on Parallel
Processing. 2018, pp. 1–10.

[169] Daniele G Spampinato and Markus Püschel. “A basic linear algebra compiler”. In: Proceed-
ings of Annual IEEE/ACM International Symposium on Code Generation and Optimization.
ACM. 2014, p. 23.

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/openmp-potential-gain.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/openmp-potential-gain.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference/openmp-potential-gain.html
http://myaccess.library.utoronto.ca/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fdissertations-theses%2Fautomatic-sparse-computation-parallelization%2Fdocview%2F2451139805%2Fse-2%3Faccountid%3D14771
http://myaccess.library.utoronto.ca/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fdissertations-theses%2Fautomatic-sparse-computation-parallelization%2Fdocview%2F2451139805%2Fse-2%3Faccountid%3D14771
http://myaccess.library.utoronto.ca/login?qurl=https%3A%2F%2Fwww.proquest.com%2Fdissertations-theses%2Fautomatic-sparse-computation-parallelization%2Fdocview%2F2451139805%2Fse-2%3Faccountid%3D14771

BIBLIOGRAPHY 135

[170] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd.
“OSQP: An operator splitting solver for quadratic programs”. In: Mathematical Programming
Computation (2020), pp. 1–36.

[171] Michelle Mills Strout, Larry Carter, and Jeanne Ferrante. “Compile-time composition of run-
time data and iteration reorderings”. In: Proceedings of the ACM SIGPLAN 2003 conference
on Programming language design and implementation. 2003, pp. 91–102.

[172] Michelle Mills Strout, Larry Carter, Jeanne Ferrante, Jonathan Freeman, and Barbara Kreaseck.
“Combining performance aspects of irregular gauss-seidel via sparse tiling”. In: International
Workshop on Languages and Compilers for Parallel Computing. Springer. 2002, pp. 90–110.

[173] Michelle Mills Strout, Larry Carter, Jeanne Ferrante, and Barbara Kreaseck. “Sparse tiling for
stationary iterative methods”. In: The International Journal of High Performance Computing
Applications 18.1 (2004), pp. 95–113.

[174] Michelle Mills Strout, Mary Hall, and Catherine Olschanowsky. “The sparse polyhedral frame-
work: Composing compiler-generated inspector-executor code”. In: Proceedings of the IEEE
106.11 (2018), pp. 1921–1934.

[175] Michelle Mills Strout, Alan LaMielle, Larry Carter, Jeanne Ferrante, Barbara Kreaseck, and
Catherine Olschanowsky. “An approach for code generation in the sparse polyhedral frame-
work”. In: Parallel Computing 53 (2016), pp. 32–57.

[176] Michelle Mills Strout, Fabio Luporini, Christopher D Krieger, Carlo Bertolli, Gheorghe-
Teodor Bercea, Catherine Olschanowsky, J Ramanujam, and Paul HJ Kelly. “Generalizing
run-time tiling with the loop chain abstraction++”. In: 2014 IEEE 28th International Parallel
and Distributed Processing Symposium. IEEE. 2014, pp. 1136–1145.

[177] Daniel Sýkora, Ladislav Kavan, Martin Čadík, Ondřej Jamriška, Alec Jacobson, BrianWhited,
Maryann Simmons, and Olga Sorkine-Hornung. “Ink-and-Ray: Bas-Relief Meshes for Adding
Global Illumination Effects to Hand-Drawn Characters”. In: ACM Trans. Graph. 33.2 (Apr.
2014). issn: 0730-0301. doi: 10.1145/2591011. url: https://doi.org/10.1145/2591011.

[178] Tetsuya Takahashi and Christopher Batty. “Monolith: A Monolithic Pressure-Viscosity-Contact
Solver for Strong Two-Way Rigid-Rigid Rigid-Fluid Coupling”. In: ACM Trans. Graph. 39.6
(Nov. 2020). issn: 0730-0301. doi: 10.1145/3414685.3417798. url: https://doi.org/10.
1145/3414685.3417798.

[179] Yuan Tang, Rezaul Alam Chowdhury, Bradley C Kuszmaul, Chi-Keung Luk, and Charles E
Leiserson. “The pochoir stencil compiler”. In: Proceedings of the twenty-third annual ACM
symposium on Parallelism in algorithms and architectures. ACM. 2011, pp. 117–128.

[180] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. “Collecting performance data
with PAPI-C”. In: Tools for High Performance Computing 2009. Springer, 2010, pp. 157–173.

[181] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, and Jeffrey K Hollingsworth.
“A scalable auto-tuning framework for compiler optimization”. In: Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on. IEEE. 2009, pp. 1–12.

[182] Ehsan Totoni, Michael T Heath, and Laxmikant V Kale. “Structure-adaptive parallel solution
of sparse triangular linear systems”. In: Parallel Computing 40.9 (2014), pp. 454–470.

https://doi.org/10.1145/2591011
https://doi.org/10.1145/2591011
https://doi.org/10.1145/3414685.3417798
https://doi.org/10.1145/3414685.3417798
https://doi.org/10.1145/3414685.3417798

BIBLIOGRAPHY 136

[183] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew Grimshaw,
Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D Peterson, et al. “XSEDE: acceler-
ating scientific discovery”. In: Computing in science & engineering 16.5 (2014).

[184] Harmen LA Van Der Spek and Harry AG Wijshoff. “Sublimation: expanding data structures
to enable data instance specific optimizations”. In: International Workshop on Languages and
Compilers for Parallel Computing. Springer. 2010, pp. 106–120.

[185] Nicolas Vasilache, Cédric Bastoul, and Albert Cohen. “Polyhedral code generation in the real
world”. In: International Conference on Compiler Construction. Springer. 2006, pp. 185–201.

[186] Anand Venkat, Mary Hall, and Michelle Strout. “Loop and data transformations for sparse
matrix code”. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. ACM. 2015, pp. 521–532.

[187] Anand Venkat, Mahdi Soltan Mohammadi, Jongsoo Park, Hongbo Rong, Rajkishore Barik,
Michelle Mills Strout, and Mary Hall. “Automating wavefront parallelization for sparse ma-
trix computations”. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press. 2016, p. 41.

[188] Anand Venkat, Manu Shantharam, Mary Hall, and Michelle Mills Strout. “Non-affine exten-
sions to polyhedral code generation”. In: Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization. ACM. 2014, p. 185.

[189] Richard Vuduc, Shoaib Kamil, Jen Hsu, Rajesh Nishtala, James W Demmel, and Katherine
A Yelick. “Automatic performance tuning and analysis of sparse triangular solve”. In: ICS.
2002.

[190] Andreas Wächter and Lorenz T. Biegler. “On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming”. In: Mathematical Programming
106.1 (Mar. 2006). issn: 1436-4646.

[191] Richard A Waltz and Jorge Nocedal. “KNITRO 2.0 User’s Manual”. In: Ziena Optimization,
Inc.[en ligne] disponible sur http://www. ziena. com 7 (2004).

[192] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan
Wang. “Intel math kernel library”. In: High-Performance Computing on the Intel® Xeon
Phi™. Springer, 2014, pp. 167–188.

[193] Xinliang Wang, Weifeng Liu, Wei Xue, and Li Wu. “SwSpTRSV: A Fast Sparse Trian-
gular Solve with Sparse Level Tile Layout on Sunway Architectures”. In: Proceedings of
the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
PPoPP ’18. Vienna, Austria: Association for Computing Machinery, 2018, pp. 338–353. isbn:
9781450349826. doi: 10 . 1145 / 3178487 . 3178513. url: https : / / doi . org / 10 . 1145 /
3178487.3178513.

[194] Nicholas J. Weidner, Kyle Piddington, David I. W. Levin, and Shinjiro Sueda. “Eulerian-on-
Lagrangian Cloth Simulation”. In: ACM Trans. Graph. 37.4 (July 2018). issn: 0730-0301.

[195] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and James
Demmel. “Optimization of sparse matrix–vector multiplication on emerging multicore plat-
forms”. In: Parallel Computing 35.3 (2009), pp. 178–194.

https://doi.org/10.1145/3178487.3178513
https://doi.org/10.1145/3178487.3178513
https://doi.org/10.1145/3178487.3178513

BIBLIOGRAPHY 137

[196] Elizabeth Wong. Active-set methods for quadratic programming. University of California, San
Diego, 2011.

[197] Stephen J Wright. Primal-dual interior-point methods. Vol. 54. Siam, 1997.

[198] Z Xianyi. OpenBLAS: an optimized BLAS library. 2016.

[199] Jiaxian Yao, Danny M. Kaufman, Yotam Gingold, and Maneesh Agrawala. “Interactive De-
sign and Stability Analysis of Decorative Joinery for Furniture”. In: ACM Trans. Graph. 36.4
(Mar. 2017). issn: 0730-0301.

[200] Yu-Hong Yeung, Jessica Crouch, and Alex Pothen. “Interactively Cutting and Constraining
Vertices in Meshes Using Augmented Matrices”. In: ACM Trans. Graph. 35.2 (Feb. 2016).
issn: 0730-0301.

[201] Changxi Zheng and Doug L. James. “Toward High-Quality Modal Contact Sound”. In: ACM
Trans. Graph. SIGGRAPH ’11 (July 2011).

[202] Yufeng Zhu, Robert Bridson, and Danny M. Kaufman. “Blended Cured Quasi-Newton for
Distortion Optimization”. In: ACM Trans. Graph. 37.4 (July 2018). issn: 0730-0301.

[203] Sicong Zhuang and Marc Casas. “Iteration-fusing conjugate gradient”. In: Proceedings of the
International Conference on Supercomputing. 2017, pp. 1–10.

[204] Xiaotong Zhuang, Alexandre E Eichenberger, Yangchun Luo, Kevin O’Brien, and Kathryn
O’Brien. “Exploiting parallelism with dependence-aware scheduling”. In: Parallel Architec-
tures and Compilation Techniques, 2009. PACT’09. 18th International Conference on. IEEE.
2009, pp. 193–202.

[205] Intel Developer Zone. “Intel VTune Amplifier, 2017”. In: Documentation at the URL: https://
software.intel.com/en-us/intel-vtune-amplifier-xe-support/documentation ().

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Sparse Computations
	State of The Art
	The Sympiler Solution
	Contributions
	Scope

	Dissertation Overview

	Background
	Sparse Matrix
	Sparse Matrix Storage Formats

	Parallel Architectures
	Multicore Processors

	Testbed Architectures
	Datasets
	Sparse Matrix Dataset
	Sparse Quadratic Programming Dataset

	Decoupling Symbolic Information for Code Transformation
	Introduction
	Motivating Scenario
	Static Sparsity Patterns
	Contributions

	Sympiler
	Sympiler Overview
	Symbolic Inspector
	Inspector-guided Transformations
	Enabled Conventional Low-level Transformations

	Case Studies
	Sparse Triangular Solve
	Cholesky Factorization
	Other Matrix Methods

	Experimental Results
	Methodology
	Performance of Generated Code
	Symbolic Analysis Time

	Related Work

	Transformation and Inspection for Parallelism
	Introduction
	ParSy Overview
	H-Level Inspector
	Parallel Code Transformation
	Implementation

	Load-Balanced Level Coarsening (LBC)
	Problem Definition
	LBC Algorithm
	Cost Model & Windowing Heuristic

	Other Sparse Matrix Methods
	Experimental Results
	Related Work

	Sparse Fusion
	Sparse Fusion
	Code Generation
	The Inspector in Sparse Fusion
	Fused Code

	Multi-Sparse DAG Partitioning
	Inputs and Output to MSP
	The MSP Algorithm

	Experimental Results
	Related work

	Adaptive Sparsity Pattern in Quadratic Programming
	Introduction
	Problem Statement and Preliminaries
	Accuracy
	Active-Set KKT System Solutions

	SoMod: Sparsity-oriented row modification
	Initialization Phase
	Factor Modification
	Triangular Solve and Accuracy Refinement

	NASOQ: Numerically Accurate Sparsity-Oriented QP Solver
	NASOQ-Fixed
	NASOQ-Tuned

	Experimental Results
	Experimental Setup
	Benchmark Repository for Sparse Quadratic Programs
	Accuracy, Efficiency, and Scalability of NASOQ
	Effect of Numerical Range
	Effect of SoMod

	Related Work

	Conclusion and Future Work
	Appendix for Transforming Sparse Matrix Computations
	DAG Partitioners Limitations
	Experimental Results for Xeon Platinum8160
	Settings for QP solvers
	Gurobi
	MOSEK
	OSQP
	QL

	Application-based breakdown for NASOQ

	Bibliography

