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Abstract
This work proposes a framework called FuSy that analyzes
the data dependence graphs (DAGs) of two sparse kernels
and creates an efficient schedule to execute the kernels in
combination. Sparse kernels are frequently used in scientific
codes and in machine learning algorithms and very often
they are used in combination. Iterative linear system solvers
are an examplewhere kernels such as sparse triangular solver
(SpTRSV) and sparse matrix-vector multiplication (SpMV)
are called consecutively in each iteration of the solver. Prior
approaches typically optimize these sparse kernels indepen-
dently leading to high synchronization overheads and low
locality. We propose an approach that analyzes the DAGs
of two sparse kernels and then creates a new order of ex-
ecution that enables running the two kernels efficiently in
parallel. To investigate the efficiency of our approach, we
compare it with the state-of-the-art MKL library for two ker-
nel combinations, SpTRSV-SpMV and SpMV-SpTRSV which
are commonly used in iterative solvers. Experimental re-
sults show that our approach is on average 2.6× and 1.8×
faster than the MKL library for a set of matrices from the
Suitesparse matrix repository.

CCS Concepts: • Computing methodologies→ Shared
memory algorithms; • Software and its engineering →
Source code generation.
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1 Extended Abstract
The numerical methods [10] that are frequently used in real-
world applications such as in scientific simulations and data
analytic codes are often composed of a number of sparse
matrix computations that execute inside an iteration of the
numerical algorithm and between iterations. Because sparse
kernels are often themost time-consuming operation in these
applications, numerous library and compiler approaches
have been proposed to optimize these kernels. However,
prior work primarily optimizes sparse kernels in isolation
thus when used to accelerate real-world simulations the re-
alized speedups are sometimes not significant.

Numerous parallel sparse libraries [11, 16] and inspector-
executor approaches that inspect memory access patterns
at runtime such as [6, 8, 12, 15] optimize individual sparse
matrix kernels. Kernels with a fully parallel outermost loop
have sufficient parallelism and thus an efficient schedule is
needed to create a balanced parallel implementation. Sparse
kernels with partial parallelism, i.e. loop-carried dependen-
cies, have irregular computation patterns that depend on the
sparse matrix code and input data, thus runtime inspection
is required to extract the computation patterns. In inspector-
executor frameworks and libraries such as [2, 13], a data
flow directed acyclic graph (DAG) is built to expose data
dependencies. For example, the inspectors in [6, 15], use
wavefront parallelism to create a parallel schedule for ker-
nels with partial parallelism. First, the DAG is created, and
is traversed in topological order to create a list of wavefronts
that are iterations that can execute in parallel; this is known
as wavefront parallelism.

Wavefront parallelism requires synchronization between
wavefronts, and thus when applied to individual sparse ker-
nels with loop-carried dependencies can be less efficient due
to synchronization overheads. Also, for sparse kernels with
non-uniform workloads, such as Cholesky [3], wavefront
methods can lead to load imbalance.
DAG partitioning techniques such as DAGP [7] (used

in [9]) typically create fewer wavefronts, thus reducing syn-
chronization overheads, and group iterations that reuse data
to improve data locality. DAGP adopts amultilevel approach [1]
with coarsening and refinement for acyclic partitioning of
DAG. These techniques are efficient for individual sparse
computations, however, when applied to the joint DAG, they
create some non-linear overheads or large exploration space
and thus significantly increase analysis time. For example,
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when applied to the joint DAG of two sparse kernels such as
sparse triangular solver (SpTRSV) and sparse matrix-vector
multiplication (SpMV), DAGP becomes 5 times slower for
selected set of matrices from Suitesparse [5], even though
the joint DAG size increases two times.
We present an approach that creates an efficient sched-

ule for when sparse kernels are used jointly. Our approach
analyzes the data dependence graph of two sparse kernels
to create a load-balanced parallel schedule of the combined
code with good locality. Locality is improved by assigning
dependent vertices to the same group and then executing
that group of vertices via the same thread. Load balance
is improved by assigning vertices throughout execution to
create well-balanced tasks.

Results are collected on a Haswell multicore architecture
with 12 cores of a Xeon E5-2680v3 processor and a 30MB L3
cache. We use matrices from the Suitesparse [5] repository
to compare our approach with MKL [16]. The matrices are
selected to be of different sizes and varying sparsity patterns
from a small number of nonzero elements (1.4 × 105) to a
large number of nonzero elements (1.1 × 108). We use MKL
2019.3.199 and call each kernel from the MKL library sep-
arately. The performance of both our approach and MKL
are tested on two kernel combinations, SpTRSV-SpMV and
SpMV-SpTRSV. Both combinations are used in iterative lin-
ear solver methods such as preconditioned GMRES [4] and
Gauss-seidel. Here we focus on joint optimization of kernels
within an iteration of the solver to ensure the stability of the
solver. For the combinations of SpTRSV-SpMV and SpMV-
SpTRSV, we improved over the MKL library by an average
speedup of 2.6× and 1.8× consecutively.
This work focuses primarily on optimizing the combina-

tion of SpTRSV and SpMV using the proposed approach.
As future work, the DAGs of other sparse kernels and their
combination should be studied to create an efficient sched-
ule for joining these kernels. Also, a combination of some
sparse kernels might not be cost-efficient, and hence new
models should be investigated for the efficiency of joint ex-
ecution. We also plan to apply the proposed approach to
real-world benchmarks to demonstrate the effect of sparse
kernel combinations.
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