
POSTER: Optimizing Sparse Computations Jointly
Kazem Cheshmi

Computer Science Department
University of Toronto

Toronto, Canada
kazem@cs.toronto.edu

Michelle Mills Strout
Computer Science Department

University of Arizona
Tucson, USA

mstrout@cs.arizona.edu

Maryam Mehri Dehnavi
Computer Science Department

University of Toronto
Toronto, Canada

mmehride@cs.toronto.edu

Abstract
This work proposes a framework called FuSy that analyzes
the data dependence graphs (DAGs) of two sparse kernels
and creates an efficient schedule to execute the kernels in
combination. Sparse kernels are frequently used in scientific
codes and in machine learning algorithms and very often
they are used in combination. Iterative linear system solvers
are an examplewhere kernels such as sparse triangular solver
(SpTRSV) and sparse matrix-vector multiplication (SpMV)
are called consecutively in each iteration of the solver. Prior
approaches typically optimize these sparse kernels indepen-
dently leading to high synchronization overheads and low
locality. We propose an approach that analyzes the DAGs
of two sparse kernels and then creates a new order of ex-
ecution that enables running the two kernels efficiently in
parallel. To investigate the efficiency of our approach, we
compare it with the state-of-the-art MKL library for two ker-
nel combinations, SpTRSV-SpMV and SpMV-SpTRSV which
are commonly used in iterative solvers. Experimental re-
sults show that our approach is on average 2.6× and 1.8×
faster than the MKL library for a set of matrices from the
Suitesparse matrix repository.

CCS Concepts: • Computing methodologies→ Shared
memory algorithms; • Software and its engineering →
Source code generation.

Keywords: Sparse matrix code, loop fusion, loop-carried
dependence

ACM Reference Format:
Kazem Cheshmi, Michelle Mills Strout, andMaryamMehri Dehnavi.
2022. POSTER: Optimizing Sparse Computations Jointly. In 27th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’22), February 12–16, 2022, Seoul, Republic of
Korea. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3503221.3508439

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9204-4/22/04.
https://doi.org/10.1145/3503221.3508439

1 Extended Abstract
The numerical methods [10] that are frequently used in real-
world applications such as in scientific simulations and data
analytic codes are often composed of a number of sparse
matrix computations that execute inside an iteration of the
numerical algorithm and between iterations. Because sparse
kernels are often themost time-consuming operation in these
applications, numerous library and compiler approaches
have been proposed to optimize these kernels. However,
prior work primarily optimizes sparse kernels in isolation
thus when used to accelerate real-world simulations the re-
alized speedups are sometimes not significant.

Numerous parallel sparse libraries [11, 16] and inspector-
executor approaches that inspect memory access patterns
at runtime such as [6, 8, 12, 15] optimize individual sparse
matrix kernels. Kernels with a fully parallel outermost loop
have sufficient parallelism and thus an efficient schedule is
needed to create a balanced parallel implementation. Sparse
kernels with partial parallelism, i.e. loop-carried dependen-
cies, have irregular computation patterns that depend on the
sparse matrix code and input data, thus runtime inspection
is required to extract the computation patterns. In inspector-
executor frameworks and libraries such as [2, 13], a data
flow directed acyclic graph (DAG) is built to expose data
dependencies. For example, the inspectors in [6, 15], use
wavefront parallelism to create a parallel schedule for ker-
nels with partial parallelism. First, the DAG is created, and
is traversed in topological order to create a list of wavefronts
that are iterations that can execute in parallel; this is known
as wavefront parallelism.

Wavefront parallelism requires synchronization between
wavefronts, and thus when applied to individual sparse ker-
nels with loop-carried dependencies can be less efficient due
to synchronization overheads. Also, for sparse kernels with
non-uniform workloads, such as Cholesky [3], wavefront
methods can lead to load imbalance.
DAG partitioning techniques such as DAGP [7] (used

in [9]) typically create fewer wavefronts, thus reducing syn-
chronization overheads, and group iterations that reuse data
to improve data locality. DAGP adopts amultilevel approach [1]
with coarsening and refinement for acyclic partitioning of
DAG. These techniques are efficient for individual sparse
computations, however, when applied to the joint DAG, they
create some non-linear overheads or large exploration space
and thus significantly increase analysis time. For example,

https://doi.org/10.1145/3503221.3508439
https://doi.org/10.1145/3503221.3508439
https://doi.org/10.1145/3503221.3508439


PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Kazem Cheshmi, Michelle Mills Strout, and Maryam Mehri Dehnavi

when applied to the joint DAG of two sparse kernels such as
sparse triangular solver (SpTRSV) and sparse matrix-vector
multiplication (SpMV), DAGP becomes 5 times slower for
selected set of matrices from Suitesparse [5], even though
the joint DAG size increases two times.
We present an approach that creates an efficient sched-

ule for when sparse kernels are used jointly. Our approach
analyzes the data dependence graph of two sparse kernels
to create a load-balanced parallel schedule of the combined
code with good locality. Locality is improved by assigning
dependent vertices to the same group and then executing
that group of vertices via the same thread. Load balance
is improved by assigning vertices throughout execution to
create well-balanced tasks.

Results are collected on a Haswell multicore architecture
with 12 cores of a Xeon E5-2680v3 processor and a 30MB L3
cache. We use matrices from the Suitesparse [5] repository
to compare our approach with MKL [16]. The matrices are
selected to be of different sizes and varying sparsity patterns
from a small number of nonzero elements (1.4 × 105) to a
large number of nonzero elements (1.1 × 108). We use MKL
2019.3.199 and call each kernel from the MKL library sep-
arately. The performance of both our approach and MKL
are tested on two kernel combinations, SpTRSV-SpMV and
SpMV-SpTRSV. Both combinations are used in iterative lin-
ear solver methods such as preconditioned GMRES [4] and
Gauss-seidel. Here we focus on joint optimization of kernels
within an iteration of the solver to ensure the stability of the
solver. For the combinations of SpTRSV-SpMV and SpMV-
SpTRSV, we improved over the MKL library by an average
speedup of 2.6× and 1.8× consecutively.
This work focuses primarily on optimizing the combina-

tion of SpTRSV and SpMV using the proposed approach.
As future work, the DAGs of other sparse kernels and their
combination should be studied to create an efficient sched-
ule for joining these kernels. Also, a combination of some
sparse kernels might not be cost-efficient, and hence new
models should be investigated for the efficiency of joint ex-
ecution. We also plan to apply the proposed approach to
real-world benchmarks to demonstrate the effect of sparse
kernel combinations.

Acknowledgments
This workwas supported in part by NSERCDiscovery Grants
(RGPIN-06516, DGECR00303), the Canada Research Chairs
program, and U.S. NSF awards NSF CCF-1814888, NSF CCF-
1657175; used the Extreme Science and Engineering Discov-
ery Environment (XSEDE) [14] which is supported by NSF
grant number ACI-1548562; and was enabled in part by Com-
pute Canada and Scinet1. We also like to thankGeorgeHuang
for his involvement in the prototyping of the approach.

1www.computecanada.ca

References
[1] Thang Nguyen Bui and Curt Jones. 1993. A heuristic for reducing fill-in

in sparse matrix factorization. Technical Report. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA.

[2] Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and
Maryam Mehri Dehnavi. 2017. Sympiler: transforming sparse
matrix codes by decoupling symbolic analysis. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1–13.

[3] Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and
Maryam Mehri Dehnavi. 2018. ParSy: inspection and transfor-
mation of sparse matrix computations for parallelism. In SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 779–793.

[4] KazemCheshmi, DannyMKaufman, Shoaib Kamil, andMaryamMehri
Dehnavi. 2020. NASOQ: numerically accurate sparsity-oriented QP
solver. ACM Transactions on Graphics (TOG) 39, 4 (2020), 96–1.

[5] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse
matrix collection. ACM Transactions on Mathematical Software (TOMS)
38, 1 (2011), 1.

[6] R Govindarajan and Jayvant Anantpur. 2013. Runtime dependence
computation and execution of loops on heterogeneous systems. In
Proceedings of the 2013 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). IEEE Computer Society, 1–10.

[7] JulienHerrmann,M. Yusuf Özkaya, Bora Uçar, Kamer Kaya, and Ümit V.
Çatalyürek. 2019. Multilevel Algorithms for Acyclic Partitioning of
Directed Acyclic Graphs. SIAM Journal on Scientific Computing (SISC)
41, 4 (2019), A2117–A2145. https://doi.org/10.1137/18M1176865

[8] Mahdi Soltan Mohammadi, Tomofumi Yuki, Kazem Cheshmi, Eddie C
Davis, Mary Hall, Maryam Mehri Dehnavi, Payal Nandy, Catherine
Olschanowsky, Anand Venkat, and Michelle Mills Strout. 2019. Sparse
computation data dependence simplification for efficient compiler-
generated inspectors. In Proceedings of the 40th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. 594–609.

[9] M. Yusuf Özkaya, Anne Benoit, Bora Uçar, Julien Herrmann, and
Ümit V. Çatalyürek. 2019. A scalable clustering-based task sched-
uler for homogeneous processors using DAG partitioning. In 33rd IEEE
International Parallel and Distributed Processing Symposium.

[10] Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM.
[11] Yousef Saad and Andrei VMalevsky. 1995. P-Sparslib: a portable library

of distributedmemory sparse iterative solvers. In Proceedings of Parallel
Computing Technologies (PaCT-95), 3-rd international conference, St.
Petersburg. Citeseer.

[12] Michelle Mills Strout, Larry Carter, Jeanne Ferrante, Jonathan Free-
man, and Barbara Kreaseck. 2002. Combining performance aspects of
irregular gauss-seidel via sparse tiling. In International Workshop on
Languages and Compilers for Parallel Computing. Springer, 90–110.

[13] Michelle Mills Strout, Mary Hall, and Catherine Olschanowsky. 2018.
The sparse polyhedral framework: Composing compiler-generated
inspector-executor code. Proc. IEEE 106, 11 (2018), 1921–1934.

[14] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R.
Scott, and N. Wilkins-Diehr. 2014. XSEDE: Accelerating Scientific
Discovery. Computing in Science & Engineering 16, 5 (Sept.-Oct. 2014),
62–74. https://doi.org/10.1109/MCSE.2014.80

[15] Anand Venkat, Mahdi Soltan Mohammadi, Jongsoo Park, Hongbo
Rong, Rajkishore Barik, Michelle Mills Strout, and Mary Hall. 2016.
Automating wavefront parallelization for sparse matrix computations.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 41.

[16] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu,
Qing Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-
Performance Computing on the Intel® Xeon Phi™. Springer, 167–188.

https://doi.org/10.1137/18M1176865
https://doi.org/10.1109/MCSE.2014.80

	Abstract
	1 Extended Abstract
	Acknowledgments
	References

